- 博客(27)
- 收藏
- 关注
原创 【25】木材表面缺陷数据集(有v5/v8模型)/YOLO木材表面缺陷检测
本文介绍了一个用于木材表面缺陷检测的数据集和训练模型。数据集包含4000张已标注图片,划分为3556张训练集和444张验证集,涵盖8类缺陷类型:石细胞、活节、髓心、树脂、死节、带裂纹的节、缺节和裂纹。作者提供了YOLOv5(map0.675)和YOLOv8(map0.699)两种训练100轮的模型结果,均达到较好检测效果。
2025-06-23 20:34:07
254
原创 【24】二维码数据集(有v5/v8模型)/YOLO二维码检测
本文介绍了包含3112张已标注图片的二维码数据集,划分为2623张训练集和489张验证集,可直接用于目标检测任务。展示了YOLOv5和YOLOv8模型训练100轮后的优异表现,两者mAP均达到0.995。
2025-06-21 18:57:21
452
原创 【23】PCB缺陷数据集(有v5/v8模型)/YOLO PCB缺陷检测
本文介绍了一个包含7类PCB缺陷的检测数据集,共计2590张标注图片,划分为训练集(2026)、验证集(377)和测试集(187)。数据集可直接用于目标检测训练,类别包括过量焊接、开路、短路等常见PCB缺陷。同时提供了YOLOv5和YOLOv8模型的训练结果,其中YOLOv5模型达到0.914的mAP。
2025-06-19 15:38:16
360
原创 【22】反光衣数据集(有v5/v8模型)/YOLO反光衣检测
本文介绍了用于目标检测的反光衣数据集及训练模型结果。数据集包含2388张已标注图片,分为穿反光衣和未穿反光衣两类,按1857:531划分训练集和验证集。训练结果显示,YOLOv5模型100轮训练后mAP达0.895,YOLOv8模型mAP为0.892。
2025-06-18 16:10:01
376
原创 【21】车牌数据集(有v5/v8模型)/YOLO车牌检测
本文介绍了一个包含10,000张已标注车牌图片的数据集(8,000张蓝牌、2,000张绿牌),训练集与验证集比例为8334:1666,可直接用于目标检测训练。数据集标注为txt格式,类别为"licence(车牌)"。同时提供了基于YOLOv5和YOLOv8训练的模型结果,两者在100轮训练后均达到0.994的mAP值。
2025-06-16 16:57:44
227
原创 【20】番茄叶片病害数据集(有v5/v8模型)/YOLO番茄叶片病害检测
本文介绍了用于番茄叶片病害检测的数据集及训练模型。数据集包含1500张已标注图片,涵盖5种类别(早疫病、健康、晚疫病、花叶病、黄花曲叶病),并按1250:250划分训练集和验证集。基于该数据集训练的YOLOv5和YOLOv8模型表现优异,其中YOLOv5模型mAP达0.988,YOLOv8模型mAP更高达0.995。
2025-06-11 19:53:41
540
原创 【19】马铃薯叶片病害数据集(有v5/v8模型)/YOLO马铃薯叶片病害检测
本文介绍了马铃薯叶片病害检测数据集及训练模型结果。数据集包含1912张已标注图片,划分1700:212训练集/验证集,涵盖5类病害:健康、普通/严重早疫病、普通/严重晚疫病。提供了YOLOv5和YOLOv8训练100轮后的模型,两者mAP均达0.93。
2025-06-11 14:45:15
319
原创 【18】手势识别数据集(有v5/v8模型)/YOLO手势检测
本文介绍了手势识别数据集及相关目标检测模型。数据集包含55,952张已标注图片,涵盖7种手势类别(数字1-5及大拇指、OK手势),按52,456训练集和3,496验证集划分。提供了YOLOv5和YOLOv8训练100轮后的模型结果,两者均达到0.995的mAP值。
2025-06-10 16:36:57
370
原创 【17】课堂行为数据集(有v5/v8模型)/YOLO课堂行为检测
本文介绍了一个包含4266张图片的课堂行为检测数据集,已标注为txt格式,涵盖举手、读书和写作三类行为。数据集按3418:848划分为训练集和验证集,可直接用于目标检测训练。同时提供了YOLOv5和YOLOv8模型训练100轮后的结果,map值分别达到0.705和0.723。
2025-06-10 16:27:40
221
原创 【16】牵绳遛狗数据集(有v5/v8模型)/YOLO牵绳遛狗检测
本文介绍了一个包含13,203张标注图片的牵绳遛狗检测数据集,划分为训练集11,219张、验证集1,439张和测试集556张,可直接用于目标检测训练。数据集包含三类标签:狗(Dog)、牵绳遛狗(Leashed_Dog)和未牵绳遛狗(Unleashed_Dog),并提供了YOLOv5和YOLOv8的预训练模型结果(mAP分别达0.944和0.986)。
2025-06-10 16:24:13
450
原创 【YOLOv5目标检测教程】深入解析yolov5-7.0代码文件结构
本文介绍了YOLOv5-7.0版本的代码结构,帮助开发者快速理解和使用该目标检测框架。文章详细解析了主要目录的功能,包括分类(classify/)、数据(data/)、模型(models/)、分割(segment/)模块和工具(utils/),并说明了核心执行脚本如训练(train.py)、检测(detect.py)等。作者还提供了代码下载链接和相关教程指引,适合不同层次的开发者参考使用。通过清晰的项目结构说明,读者可以快速定位所需功能模块,提升开发效率。
2025-06-04 04:46:27
1936
原创 【15】钢铁表面缺陷数据集(有v5/v8模型)/YOLO钢铁表面缺陷检测
本文数据集包含1800张已标注图片,涵盖6类缺陷:裂痕、夹杂物、板块、麻点、压入氧化皮和划痕。数据已划分为1440张训练集和360张验证集,可直接用于目标检测训练。提供两种预训练模型结果:YOLOv5模型(mAP 0.699)和YOLOv8模型(mAP 0.707)。
2025-06-03 15:33:07
453
原创 【14】安全帽数据集(有v5/v8模型)/YOLO安全帽检测
本文介绍了安全帽检测数据集及训练模型结果。数据集包含4356张已标注图片,分为"未佩戴安全帽"和"佩戴安全帽"两类,训练集与验证集比例为3089:1267。基于该数据集训练得到的YOLOv5模型(训练100轮)准确率达0.977,YOLOv8模型(训练100轮)准确率为0.945。
2025-06-03 08:07:13
450
原创 【13】安全帽反光衣数据集(有v5/v8模型)/YOLO安全帽反光衣检测
本文介绍了一个包含4408张图片的安全帽及反光衣检测数据集,已标注为txt格式并按8:1:1比例划分为训练集、验证集和测试集。数据集包含4个类别:穿反光衣(vest)、未戴安全帽(no-helmet)、佩戴安全帽(helmet)和未穿反光衣(no-vest)。经YOLOv5和YOLOv8各训练100轮后,模型分别达到0.907和0.909的mAP值。数据集可直接用于目标检测训练
2025-06-01 15:34:44
250
原创 【12】火焰烟雾数据集(有v5/v8模型)/YOLO火焰烟雾检测
该资源包含6744张已标注的火焰和烟雾图片数据集,划分为5463张训练集和1281张验证集,支持直接用于目标检测训练。数据集包含fire(火焰)和smoke(浓烟)两类标注。提供YOLOv5和YOLOv8两种预训练模型结果,其中YOLOv5-v7.0训练100轮达到0.864 mAP,YOLOv8训练100轮达到0.855 mAP。
2025-06-01 14:02:52
423
原创 【11】牛数据集(有v5/v8模型)/YOLO牛检测
本文介绍了一个用于目标检测的牛类数据集,包含4110张已标注图片,划分为3250张训练集和860张验证集。数据集可直接用于YOLO系列模型训练,并提供了YOLOv5(map0.921)和YOLOv8(map0.887)的预训练模型结果展示。
2025-06-01 13:57:51
359
原创 【10】自动驾驶行人车辆数据集(有v5/v8模型)/YOLO自动驾驶行人车辆检测
本文介绍了一个用于目标检测的数据集,包含60,455张已标注的图片,划分为训练集、验证集和测试集,分别包含50,094、8,361和2,000张图片。数据集涵盖七种类别:公交车、行人、自行车、卡车、摩托车、小汽车和骑行者。文章还展示了使用YOLOv5和YOLOv8模型训练100轮后的结果,YOLOv5的mAP为0.537,YOLOv8的mAP为0.495。
2025-05-19 17:56:26
246
原创 【9】工程车辆数据集(有v5/v8模型)/YOLO工程车辆检测
本文介绍了一个包含6338张已标注图片的工程车辆检测数据集,涵盖推土机、卡车、挖掘机等七类车辆。数据集已按训练集、验证集和测试集划分,可直接用于目标检测训练。文章还展示了使用YOLOv5和YOLOv8模型训练100轮后的结果,分别达到了0.944和0.948的mAP值。
2025-05-19 17:45:23
311
原创 【8】行人数据集(有v5/v8模型)/YOLO行人检测
本文介绍了一个用于目标检测的行人数据集,包含9000张已标注的图片,训练集和验证集按7200:1800划分。数据集可直接用于目标检测训练,主要类别为“person”。文章还展示了使用YOLOv5和YOLOv8模型训练100轮后的结果,YOLOv5的mAP为0.730,YOLOv8的mAP为0.742。
2025-05-19 17:40:50
1077
原创 【7】车辆数据集(有v5/v8模型)/YOLO车辆检测
本文介绍了一个用于目标检测的车辆数据集,包含82,085张已标注的图片,划分为训练集、验证集和测试集,分别包含59,101、16,417和6,567张图片。数据集中包含四类车辆:小车、面包车、公交车和其他车辆。文章还展示了使用YOLOv5和YOLOv8模型训练100轮后的结果,分别达到了0.994和0.993的mAP(平均精度)。
2025-05-19 17:34:45
387
原创 【6】横幅数据集(有v5/v8模型)/YOLO横幅检测
图片数量2007张,已标注txt格式训练集验证集按1604:403划分,可直接用于目标检测训练。有训练好的YOLOv5和YOLOv8检测模型。
2025-05-19 17:16:43
342
原创 【5】蘑菇数据集(有v5/v8模型)/YOLO蘑菇检测
图片数量9266张,已标注txt格式训练集验证集按7234:2032划分,可直接用于目标检测训练。有训练好的YOLOv5和YOLOv8检测模型。
2025-05-03 12:22:56
605
1
原创 【4】花卉数据集(有v5/v8模型)/YOLO花卉检测
图片数量351张,已标注txt格式训练集验证集按311:40划分,可直接用于目标检测训练。有训练好的YOLOv5和YOLOv8检测模型
2025-05-03 12:07:22
302
原创 【3】条形码数据集(有v5/v8模型)/YOLO条形码检测
图片数量2414张,已标注txt格式训练集验证集按2117:297划分,可直接用于目标检测训练。有训练好的YOLOv5和YOLOv8检测模型。
2025-05-03 11:34:45
526
原创 【2】水果数据集(有v5/v8模型)/YOLO水果检测
本文介绍了一个水果目标检测数据集,包含354张已标注图片,涵盖苹果、香蕉、橘子三类水果,其中训练集261张、验证集93张。使用该数据集训练的YOLOv5模型达到0.979 mAP,YOLOv8模型达0.985 mAP。
2025-05-03 10:49:13
525
原创 【1】行人车辆数据集(有v5/v8模型)/YOLO行人车辆检测
本文介绍了基于COCO2017数据集处理得到的行人车辆检测数据集,包含41,083张标注图片(训练集38,173张,验证集2,910张),涵盖4个类别:行人、自行车、机动车和非机动车。文章展示了YOLOv5和YOLOv8模型的训练结果,其中YOLOv5模型达到0.661的mAP,YOLOv8模型为0.614。
2025-05-03 08:50:28
382
原创 【YOLOv5目标检测教学】包括环境配置、数据集制作、模型训练、加载模型进行目标检测(超详细、小白入门版)
本文将全面阐述yolov5目标检测使用教学,首先是配置yolov5的运行环境以及yolov5的代码下载,然后教学如何制作自己的目标检测数据集以及如何利用yolov5加载该数据集进行目标检测模型训练,最后教学如何通过yolov5加载训练好的模型进行目标检测以达到检测自己想要的目标功能!(本篇文章全程以花卉检测为例子进行讲解,对其他目标的检测基本一致!以上就是整个yolov5目标检测的详细教学啦,详细讲解了环境配置、数据集制作、模型训练、加载模型进行目标检测!最后对文章有问题的欢迎在评论区留言询问噢!
2024-11-13 17:19:15
12502
26
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人