在油气储运工程中,集输管网的布局优化是降低建设成本、提高运行效率的关键环节。根据中国石油工程设计大赛和油气储运工程设计技能大赛的相关赛题背景,本文将围绕天然气集输管网布局优化展开讨论,重点介绍一种结合改进K-means算法和遗传算法的混合求解方法,并探讨其在实际应用中的优势。
一、背景与意义
天然气集输网管的线路投资约为数万元/km,且在整个天然气集气集输系统的投资中,管线投资要占整个集输系统投资总的70%左右,集输管网布局优化意义重大。油气集输管网目前有放射状管网布局、枝状管网布局、环状管网布局以及组合式管网布局。常见的布局优化算法包括K-means算法、Prim算法、智能算法以及确定性算法等,然而,以往布局优化设计大都不考虑输量、管径等关键设计参数,导致所得管网布局方案往往不是最优方案[1]。为此,本文提出了一种基于改进K-means算法和遗传算法的混合优化方法,综合考虑气井坐标、产量、压力及外输首站位置,以实现最低总建设费用为目标。
二、优化模型与求解方法
1. 优化目标
以集输管网总建设费用最低为目标函数,建立数学模型。具体包括以下要素:
- 管线布局:直接影响建设成本。
- 管径规格:由流量决定,影响材料成本。
- 约束条件:流量平衡、无环状管网等。
2. 混合求解方法
采用改进K-means算法和遗传算法相结合的方式,分两步完成优化:
- 改进K-means算法:用于确定处理厂的最佳选址。
- 遗传算法:用于求解最优的管道连接方案。