目前没有直接找到质数的方法,所以我们可以用先找到合数,然后用自然数集减去合数集就可以得到质数集。
我们先求合数集
我们可以看见,在这个矩阵中,我们能完全保证2n以下的所有合数全部被表示出来了,而2n以上的我们不能保证,所以我们为了减少计算机的计算量,大于2n以上的数就不计算了。
我们可以看见有很多重复的计算,比如2乘了大于2的所有数,而大于2的所有数同样也乘了2,对于3来说也是一样,所以我们直接删除重复的计算,
1.只需要让每个数从2乘到自身就好了,这样就不会重复了。
一旦大于2n那么后面的数就不用算了
m=2000000;%找到2000000以下的所有质数
k=zeros(1,m);
i=1;
%找到2000000以下所有的合数
for x=2:1:m/2
for y=2:1:m/2
if y<=x
product=x*y;
if product <= m % 检查乘积是否小于等于 m
k(i) = product; % 存储乘积到 k 数组
i = i + 1; % 增加 i 的值以指向 k 数组的下一个位
end
end
if product>=m
break
end
end
end
n=1:m;
zss = setdiff(n, k);%自然数集减去合数集得到质数集
2.当然也可以让每个数从自身开始乘积到n。但一旦大于2n就不用计算后面的数了
m=2000000;%找到2000000以下的所有质数
k=zeros(1,m);
i=1;
%找到2000000以下所有的合数
for x=2:1:m/2
for y=x:1:m/2
product=x*y;
if product <= m % 检查乘积是否小于等于 m
k(i) = product; % 存储乘积到 k 数组
i = i + 1; % 增加 i 的值以指向 k 数组的下一个位
end
if product>=m
break
end
end
end
n=1:m;
zss = setdiff(n, k);%自然数集减去合数集得到质数集
其实我们知道,m内的所有合数多可以表示为根号m内所有质数的倍数。所有其实我们并不需要找到所有数的乘积,只需要找到根号m内所有数的倍数,节省了大量的计算时间
m=2000000;%找到2000000以下的所有质数
k=zeros(1,m);
i=1;
%找到2000000以下所有的合数
u=zeros(1,m);
u(1)=1;
for x=2:1:sqrt(m)%只需要根号m内的数
for y=x:1:m/x
product=x*y;
k(i) = product; % 存储乘积到 k 数组
i = i + 1; % 增加 i 的值以指向 k 数组的下一个位
end
end
n=1:m;
zss = setdiff(n, k);%自然数集减去合数集得到质素集
其实如果能在运算的同时减去合数就好了,例如4的倍数也是2的倍数,但是我们这个程序也计算了4的倍数,其实并不需要。9的倍数也是3的倍数,同意进行了计算,浪费了大量的时间。如果能把所有的合数挑出来就好了。