1. 直线与投影面的关系
判断:
八分钟那里,有必要听一听他的讲解
有一个要注意的:如果是一般位置直线,就不可能有一个投影面垂直于一个坐标轴,所以如果出现既有平行于坐标轴的又有不平行于坐标轴的,直接判断为平行线
怎么理解他的这种以oxyz轴为判断的理论呢?
两个投影面的直线不要选取同一个轴作为参考
比如:
第二行第一个,
如果判断为两个都是平行ox轴,那就无法得出答案,要判断为一个垂直oz轴一个垂直oy轴才行
第二行第二个,不能判断都平行于oz轴,应该判断为垂直ox和oy轴
第三行第一个,应判断为垂直oz轴和oy轴,
第三行第二个,应判断为平行于ox轴和oy轴,
第三行第三个,应判断为平行于ox轴和oz轴,而不是都垂直于oy轴
2. 求一般直线的实长以及与投影面的夹角
本质就是找出两个直角边,至于你想怎么在三视图上画出来,都可以
练习:
要求 s 点坐标,只需要知道deita y
因为 s 一定在那条垂直线上(点的投影规律)
直角三角形求deita y 就行了
答案在十五分钟那里,2-第二章 直线的投影-1_哔哩哔哩_bilibili
再练一个
3. 属于直线上的点
判断一个点是否属于直线————是否等分线段
在判断是否相交问题里面很常用
可以直接量取 ab 的长度再等分,但是这样的话精确度不搞,因为ab 不一定是5的倍数,但是任意做的就可以是
也可以通过补图的方式
4. 两直线的位置
4.1 两直线平行
性质:
判定:
由于没有交点,所以考虑是否共面,共面就是平行
当然补第三面投影也是可以的
4.2 两直线相交
相交意味着交点在两个直线上(且成比例),即交点满足点的投影规律
明显,点让ab成比例但是不让cd成比例,所以点不在cd上
补图也可以
总结:如果是两条一般位置直线的话,只需要看两个投影面,否则需要三个(或者根据点分别在不在两条直线上,也就是比例来判断)
4.3 两直线交叉
利用相交的知识来看
明显不相交,也不平行,所以是异面(交叉)
4.4 两直线可见性
水平面的投影点从z轴看,正平面从y轴,侧平面从x轴
4.4 直角投影定理
4.4.1 垂直相交两直线的投影
一二是互逆的定理
注意:平行于哪个投影面,直角就在哪个投影面上
练习:
4.4.2 垂直交叉两直线的投影
练习:
欲求公垂线,先一个一个求垂直(运用垂直相交两直线的知识)
找初步确定L的位置之后,再运用点的投影规律,确保sl在同一直线上