我给 AI 当老师:训练它理解我的业务代码

本文在创作过程中借助 AI 工具辅助,以提升内容的参考价值,并确保语言表达更加流畅自然。文中的观点和思考,既整合了广泛查阅的前沿资料,也融入了我在查阅和理解中的拙见。希望这些内容能为大家带来启发,其中的观点和建议,期待与大家共勉。

在探索使用 AI 辅助开发的过程中,我发现让 AI 完全理解我们的业务代码并非易事。就拿我尝试让 DeepSeek 生成 Spring Cloud 代码来说,其中就遇到了不少问题。

一、当 AI 连 Bean 注入都搞不定时

  • 微服务间 Feign 调用常漏掉 @EnableFeignClients:在微服务架构中,Feign 是一种常用的声明式 Web 服务客户端,用于简化微服务之间的调用。但 DeepSeek 生成的代码经常会漏掉 @EnableFeignClients 注解,这就导致 Feign 无法正常工作。这说明 AI 在理解微服务架构的配置和依赖关系上,还存在一定的不足。
  • 生成的 MyBatis Plus 代码总忘记加 @TableLogic 软删除:MyBatis Plus 是一个 MyBatis 的增强工具,提供了很多便捷的功能。在涉及数据删除操作时,@TableLogic 注解可以实现软删除,即逻辑删除而非物理删除。然而,AI 生成的代码总是忽略这一点,这可能会导致数据的丢失和不一致性。
  • 多数据源配置混淆了 AbstractRoutingDataSource 的使用场景:在多数据源配置中,AbstractRoutingDataSource 是一个关键的类,用于动态切换数据源。但 AI 生成的代码常常混淆其使用场景,导致数据源切换出现问题。

二、驯化 AI 的三大实战技巧

为了让 AI 更好地理解我的业务代码,我总结了以下三大实战技巧:

  • 技巧 1:用注释写需求说明书:在定义方法时,通过详细的注释来描述需求。例如:
// 需要:带分页的模糊查询,按创建时间倒序,返回VO包装类  
// 注意:使用MyBatis Plus的QueryWrapper实现  
public Page<UserVO> findUsers(String keyword, Pageable pageable) {  
    // 在此生成方法体  
}  

这样,AI 就能根据我们的注释,生成更符合需求的代码。

  • 技巧 2:用单元测试教逻辑:当 AI 生成的支付回调服务有并发问题时,我们可以通过编写单元测试来教导它。首先,编写测试代码模拟 100 个并发请求,然后使用 @Transactional 注解和版本号验证乐观锁,最后将错误案例返回给 AI,让它重新生成代码。通过这种方式,AI 可以逐渐学习到正确的业务逻辑。
  • 技巧 3:业务语义绑定:在生成医疗挂号系统代码时,要明确业务语义。例如,禁止出现 “订单” 而要用 “预约单”,科室排班必须关联 @HospitalAnnotation 注解,用自定义异常代替 RuntimeException。这样可以确保生成的代码符合业务规范和语义。

三、我们的独特价值

在与 AI 的协作过程中,我深刻认识到我们作为开发者的独特价值:

  • 业务翻译官:我们能够将医院、银行等不同行业的业务需求,准确地转化为技术语言,让 AI 能够理解并生成相应的代码。
  • 架构防腐层:我们可以防止 AI 代码破坏 hexagonal 架构等软件架构模式,确保系统的架构稳定性和可维护性。
  • 技术缝合者:我们能够把 AI 生成的各个模块,巧妙地组装成一个可运行的系统,实现系统的整体功能。

在实训课中,我用 AI 完成了一个区级政务系统,但在跨部门流程编排的 20 个状态节点上,我还是花了 3 天时间绘制状态机图。这也再次证明,在复杂业务流程和系统架构设计方面,我们人类开发者的经验和思考是无法被 AI 替代的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值