自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 开源大模型部署

目前流行的部署方法分为:1.通过大模型官网API进行模型调用 2.在相关下载模型进行本地部署。我将详细讲解这两种方式的实现流程。

2025-08-21 09:41:02 955

原创 Transformer基础知识——从结构到代码详解

摘要:本文系统介绍了从RNN到Transformer的自然语言处理模型演进。首先分析了RNN的三大缺陷:梯度消失/爆炸、长距离依赖捕捉困难、顺序计算低效。随后介绍了seq2seq模型的Encoder-Decoder框架及其机器翻译应用。重点解析了Transformer模型,包括其核心思想(自注意力机制、多头注意力、位置编码)、显著优势(并行计算、长距离依赖建模、架构通用性)以及广泛应用(NLP、语音、图像等任务)。详细阐述了Transformer的架构组成:输入部分的嵌入层和位置编码,编码器的自注意力/多头

2025-08-07 19:43:40 853

原创 目标检测常见指标和yolov1模型结构分析

在YOLO中对目标检测的指标,每个检测出的目标物体通常都会标准一个框,用于表示目标的位置和大小,这个框叫目标框。每个网格预测2个边界框(B=2)和20个类别的概率(C=20,基于PASCAL VOC数据集)对应卷积后的形状(7,7,30),其中30具体为两个框的坐标信息,和包含的20个物体概率。将预选框区域与真实框区域的交集作为分子,将预选框区域与真实框区域的并集作为分母。模型预测为正类并实际为正类的样本数与模型预测为正类的样本数的比例。模型预测为正类并实际为正类的样本数与实际为正类的样本数的比例。

2025-07-29 13:32:34 970

原创 CNN实现分类全流程实战:从数据获取到模型部署

本文详细介绍了基于AlexNet架构的CNN模型在14类花卉图像分类任务中的实现过程。首先从Kaggle获取数据集,通过随机翻转、旋转等数据增强方法扩充样本。模型采用AdamW优化器和交叉熵损失函数,在20轮训练后达到85.71%准确率。通过添加注意力机制并将训练轮次扩展至40轮,最终测试集准确率提升至88.78%。实验表明当epoch>40时出现过拟合现象。模型应用测试显示,对网络随机下载的康乃馨、向日葵等花卉图片能正确分类。整个过程涵盖了数据预处理、网络构建、训练优化、性能评估等完整流程,为图像分

2025-07-22 19:39:23 1044

原创 模型训练可视化、验证、评估

但因为wandb.ai需要收费,所以推荐使用Pytorch官网提供的Tensor Boadr。2.获取数据,得到预测值:out ,大小为[64,10],类型为tensor表示 每次取出64条数据,共10种类型。通过生成csv文件,直观的感受预测值与真实值是否都匹配,从而验证模型建立的好快。1.创建一个空的二维numpy(),列表与预期想要的csv列数相同,行数为0。将预测值和真实值通过混淆矩阵的方式进行展示,并由此评估模型的好坏。指定tensorboard日志保存路径:可以指定多个实例对象。

2025-07-17 18:19:45 490

原创 深度学习.视觉处理(CNN)

CNN是深度学习的里程碑式成果,专门针对图像处理优化。其核心架构包含卷积层(提取局部特征)、池化层(降维增强鲁棒性)和全连接层(输出预测)。相比全连接网络,CNN通过局部连接和权值共享显著减少参数量(降90%+),提升训练效率(快5-10倍)和准确率(提升30%+)。主要应用包括图像分类、目标检测和分割。CNN还衍生出膨胀卷积、空间/深度可分离卷积等变体,在保持精度的同时进一步优化计算效率。其出色的特征提取能力已扩展到NLP、医疗影像等多个领域。

2025-07-15 18:50:19 1240

原创 深度学习基础概念(三):全连接神经网络

前馈神经网络(Feedforward Neural Network,FNN)是一种最基本的神经网络结构,其特点是信息从输入层经过隐藏层单向传递到输出层,没有反馈或循环连接。而全连接神经网络(Fully Connected Neural Network,FCNN)是前馈神经网络的一种,每一层的神经元与上一层的所有神经元全连接,常用于图像分类、文本分类等任务。我们可以通过下面两幅图来理解:在上图中,x1与x2表示输入值,而红色的圈代表神经元,而w1,w2则代表x1、x2的权重值。

2025-07-10 19:09:58 1242

原创 深度学习基础概念(二):自动微分

在PyTorch的自动微分机制中,叶子节点(leaf node)是计算图中:由用户直接创建的张量,并且它的requires_grad=True,表示可以对其进行梯度计算。在默认情况下,叶子节点的梯度。

2025-07-08 20:14:24 1278

原创 深度学习基础概念(一):Tensor

的顺序存储,即先存列,后存行。例如,对于一个二维张量 A,其形状为 (m, n),其内存布局是先存储第 0 行的所有列元素,然后是第 1 行的所有列元素,依此类推。示例:print(t3)#报错:因为T转置后数据存储顺序改变(不为连续的),不能用view方法改变形状3.transpose与permute方法transpose:只能交换张量的两个维度permute(input,dims),张量的维度转换,input要转换的张量,dims:是一个维度顺序重排后张量可能是非连续的示例:

2025-07-07 20:15:07 979

原创 用KNN算法对鸢尾花数据集分类

KNN算法算是在模型训练中较为简单的一类算法模型,以上的示例也是最基础、最简单的模型训练过程。在实际的生成中,模型训练过程往往更复杂。数据集的处理主要分为:数据集的划分(划分为训练集和测试集),对数据集进行标准化或归一化处理。我将从数据集加载,数据集的处理,模型训练与调用,测试和评估这几个方面逐步讲解数据分类过程。

2025-07-04 16:30:18 169

原创 图像的绘制(直线、圆、矩形、文字)、对视频流的操作

cv2.putText(img,"Hello",(100,100),cv2.FONT_HERSHEY_COMPLEX,2,(255,0,0),2,cv2.LINE_AA)//(坐标位置,字体样式,字体大小,颜色,粗细,抗锯齿)cv2.line(img,(100,10),(150,100),(255,255,0),2)//(开始位置、结束位置、颜色、粗细)cv2.circle(img,(x,y)),100,(0,255,255),2)//(圆心位置,半径,颜色,粗细)#获取带有颜色,背景为黑色的logo图。

2025-07-01 19:19:04 912

原创 使用opencv对图像添加水印

利用图像的相加能将两张图像叠加起来。具体的操作是在目标图像中获取需要添加的水印的位置(用黑色添加),然后将logo图灰度处理,二值化处理得到黑底白字的logo图,在将处理后的logo图与原logo图进行与运算得到保留原logo颜色图但背景为黑色。最后,将目标图与处理后的logo图的区域进行相加,就完成了添加水印的操作。img2图像(logo图)因为目标图太大不好直接添加,可以通过对图像的切片操作来对目标图进行修改。4.在目标图中添加黑色logo印。2.图像的灰度处理和二值化处理。img1图像(目标图)

2025-05-10 15:50:09 295 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除