4月26日

第一题:哈希-Leetcode454四数相加https://leetcode.cn/problems/4sum-ii/

代码:

class Solution {
public:
    int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
        int ret=0;
        unordered_map<int,int> mymap;
        for(auto x:nums1){
            for(auto y:nums2){
                mymap[(x+y)]++;
            }
        }
        for(auto x:nums3){
            for(auto y:nums4){
                if(mymap[-(x+y)])ret+=mymap[-(x+y)];
            }
        }
        return ret;
    }
};

解题思路:

        如果这题使用一般方法,如暴力遍历,四重循环一定会超时,但如果我们使用哈希,并将a+b+c+d=0转换为a+b=-(c+d),可以让时间复杂度由O(n^4)降到O(n^2) 。

        第一个双重for循环:记录所有a+b组合,且计入哈希表mymap,使得mymap[a+b]++。

        第二个双重for循环:记录所有c+d组合,且在哈希表中获取值,让ret+=mymap[-(c+d)]。因为-(c+d)对应的a+b的值其所构成的数可能不同,所以我们不是判断mymap[-(c+d)]是否不为0然后进行ret++。而是直接加上mymap[-(c+d)],这样统计的就是所有的可能组合。

        因为哈希表特性,不用担心索引为-时访问异常的情况。

考察点:

  1. 数组
  2. 哈希表键值对应应用。

第二题:Leetcode15三数之和https://leetcode.cn/problems/3sum/description/

代码:

#include <vector>
#include <algorithm>

using namespace std;

class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
        vector<vector<int>> ans;
        int n = nums.size();
        sort(nums.begin(), nums.end()); 
        
        for (int i = 0; i < n - 2; i++) {
            if (i > 0 && nums[i] == nums[i - 1]) continue; // 跳过重复nums[i]
            
            int left = i + 1, right = n - 1;
            int target = -nums[i];
            
            while (left < right) {
                int sum = nums[left] + nums[right];
                if (sum == target) {
                    ans.push_back({nums[i], nums[left], nums[right]});
                    // 跳过重复的left,right
                    while (left < right && nums[left] == nums[left + 1]) left++;
                    while (left < right && nums[right] == nums[right - 1]) right--;
                    left++;
                    right--;
                } else if (sum < target) {
                    left++;
                } else {
                    right--;
                }
            }
        }
        
        return ans;
    }
};

解题思路:

        该题如果使用暴力解法,时间复杂度来到O(n^3),根据题目所给数组长度,百分之百会超时,我们需要使用双指针解法优化时间复杂度。

        首先进行排序。方便后续使用双指针技巧,且便于跳过重复元素,避免结果重复。排序后数组中元素升序,可以更高效地控制指针的移动。

        固定一个数作为三元组的第一个元素,在该数之后的子数组中使用双指针法寻找另外两个数。遍历数组,对于每一个固定的数 nums[i],设定目标target为 -nums[i],然后在 i+1 到数组末尾的范围内,使用左右指针来寻找两个数,使得它们的和等于目标值。

        若和小于目标值,即目前所有的左数太小,没有可以令其与右数之和=target的右数,移动左指针向右;如果和大于目标值,我们移动右指针向左;如果和正好等于目标值,记录这个三元组。

        为避免重复解,在每一步跳过重复的元素。外层循环中,如果当前固定的数与前一个数相同,执行跳过。在内层双指针移动时,找到满足条件的三元组后,左右指针指向的数可能与下一个数重复,因此也跳过这些重复的数,直到新不同数。

        通过这种方法可以将时间复杂度优化到 O(n^2)。

考察点:

  1. 双指针技巧优化时间复杂度
  2. 排序的预处理
  3. 内外层循环去重逻辑设计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值