当代社会普遍存在健康管理缺失问题:超60%的职场人每日睡眠不足6小时,长期熬夜导致代谢紊乱;高校学生中75%每周运动时间低于3小时,久坐学习引发颈椎病、肥胖等问题;外卖高油高盐饮食占比达42%,且营养搭配不均衡(数据来源:《2025国民健康行为白皮书》)。人们亟需低门槛、个性化,便捷式的健康管理工具,通过智能提醒与科学指导改善生活习惯。 AI技术的发展迅速: 如今AI技术发展迅速,将AI融入进健康管理助手能更轻松有效的满足处理人们对于健康管理的需求,借助AI的能力,可以使健康管理更加的智能化,个性化。 全场景健康管理趋势: 用户期望在手机、手表、平板等多设备间无缝切换,实时获取统一健康视图。 HarmonyOS生态机遇: 截至2025年,HarmonyOS设备全球存量超8亿台,开发者可获得华为全场景流量支持。 开发一款基于HarmonyOS的原子化健康服务应用,通过分布式技术与AI能力,实现轻量化、全场景、高隐私的健康管理,覆盖全年龄段用户需求。
结合个人信息(身高,体重,运动目标,历史运动情况等),指定饮食+运动计划。市面上的相关软件指定计划之后都不可以调整,我们可以根据个人状况再进行调整。 动态调整算法:可以通过用户每日完成度(如运动时长、饮食摄入偏差等等)实时反馈,动态优化计划。例如:若用户连续3天未完成运动目标,系统自动降低下一阶段强度,并推送激励提示。 个性化计划生成:分析用户历史数据(如睡眠质量、心率变化),生成个性化计划。 传统软件缺陷:Keep、薄荷健康等应用仅支持固定模板,无法根据用户实时状态调整。 本项目相较优势:引入了健康信用分机制,通过AI评估用户执行能力,动态匹配计划复杂度。 AI全周期健康管理 饮食和运动融合。市面上的健康管理总是偏向于饮食或者偏向于运动。使用AI将两者结合分析。 鸿蒙系统融合 我们的软件基于鸿蒙系统,实现多平台互通(手机平板电脑)。深度融合了闹钟、日历、通知、卡片等鸿蒙系统应用。 闹钟:AI生成的晨间计划自动同步至系统闹钟,结合天气数据等调整唤醒时间。 通知:将助手生成的各种提示信息通过鸿蒙系统的消息通知发送给用户,例如计划缺勤提醒,运动量未达标提醒等等。 日历:运动计划以日程形式嵌入,实现日程冲突时自动重排等功能。 服务卡片:支持用户在桌面自定义例如“健康仪表盘”组件等等,实时显示关键指标(如本周完成度、饮水提醒)。 AI驱动的精细化内容 市面上的软件大多只能提供一个训练计划。我们利用了ai技术进行了更细节的内容补充,比如饮食的细节(食谱、食品搭配),运动的细节(动作的标准以及注意事项)。 饮食:结合用户过敏原、口味偏好,利用NLP解析食谱平台数据,生成个性化菜谱。例如:检测到“菠菜+豆腐”组合时,推送钙吸收抑制提醒。 运动:依据AI对个人信息和历史运动数据等的分析,当用户跑步时起步过快,导致可能无法完成设定的目标里程时,对用户进行提醒。根据心率数据与历史记录,预测运动过量风险并暂停计划。 充分利用个人信息及历史信息 我们利用个人信息、历史信息、训练偏好融合,基于ai指定计划。 用户画像构建:数据维度:基础信息(年龄、性别、身高、体重等)、行为数据(运动频率、饮食规律等)、环境数据(地理位置、季节等)、生理因素(如患病,生理期等)等等。
开始页、智能页、计划页、个人页,页面的原型设计,导航设计
系统开发与集成 前端开发:
后端逻辑:
兼容性测试:多平台多机型测试 性能调优:加快软件启动速度和运行速度,减小运行内存
设备层:手机、手表、平板等多终端硬件。 能力层:分布式数据管理、端侧AI、原子化服务。 应用层:健康监测、数据分析、跨端交互。
1. 开发阶段(2025.03 - - 2025.04) 迭代开发模式:采用敏捷开发,每两周完成一个功能模块并内部演示。 版本控制:Github托管代码,分支策略:`main`(稳定版)、`dev`(开发版)、`feature/xxx`(功能分支)。 2. 测试与部署 (2025.05 - - 2025.06) 真机测试流程: 1. 单元测试。 2. 分布式场景测试:模拟多设备断网重连、数据冲突等异常情况。 3. 上架前兼容性测试。 应用发布:提交至华为应用市场,通过“快应用”形式提供原子化服务入口。 3. 持续运营计划 (2025.06 - - ) 用户反馈闭环:内置“问题反馈”卡片,48小时内响应并修复BUG。 AI模型迭代:每月更新端侧模型,新增支持瑜伽、游泳等运动识别。
技术架构图: 页面设计图
本项目深度融合HarmonyOS分布式能力与端侧AI技术,以原子化服务重构健康管理体验,既满足全场景用户需求,又符合隐私安全合规要求,具备较高的商业落地价值与行业示范意义 |
基于HarmonyOS的智能健康助手
于 2025-03-09 18:35:00 首次发布