自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 收藏
  • 关注

原创 Async 注解原理分析

Spring的@Async注解通过动态代理实现异步方法执行,核心流程包括:1)@EnableAsync启动异步支持;2)AsyncAnnotationBeanPostProcessor创建代理;3)拦截方法调用并提交线程池处理。使用建议:自定义线程池避免资源耗尽,注意同类调用失效问题,合理处理返回值和异常。关键点:异步任务由AnnotationAsyncExecutionInterceptor拦截处理,默认使用SimpleAsyncTaskExecutor(需替换),事务需配置REQUIRES_NEW

2025-12-21 15:12:51 959

原创 Spring中的设计模式

Spring框架中应用了多种设计模式,包括工厂模式(BeanFactory)、代理模式(AOP实现)、单例模式(Bean默认作用域)、模板方法模式(JdbcTemplate)等。核心设计思想是控制反转(IoC)和依赖注入(DI),通过容器管理对象依赖关系。此外还应用了观察者模式(事件驱动)、适配器模式(AOP通知处理)、装饰者模式(动态功能扩展)等模式,这些设计模式的运用使Spring具有高度灵活性和可扩展性。

2025-12-20 13:42:53 792

原创 Spring Bean生命周期与循环依赖全解析

本文系统介绍了Spring框架中Bean管理的核心概念。主要内容包括:1) Bean的定义及常用注解(@Component、@Repository等)的区别;2) 依赖注入的三种方式及推荐做法;3) @Autowired与@Resource注解的异同;4) Bean的五种作用域及线程安全问题;5) Bean生命周期的四个阶段;6) 循环依赖问题的三种情况及解决方案,重点分析了三级缓存机制在单例模式下的应用原理。文章还探讨了@Lazy注解解决循环依赖的局限性,强调最佳实践是避免设计上的循环依赖。

2025-12-20 13:40:00 712

原创 Spring AI MCP Server Starter:快速构建MCP服务器

SpringAIMCPServerStarter是为SpringBoot应用提供MCP(模型上下文协议)服务器自动配置的组件,支持SYNC/ASYNC两种服务器类型和STDIO、WebMVCSSE、WebFluxSSE三种传输协议。它内置工具、资源、提示词、补全四大核心功能,支持变更通知、上下文传递等特性,能无缝集成SpringAI工具框架。通过自动注册SpringBean规范,开发者可以快速搭建MCP服务器并实现客户端交互,适用于命令行工具、Web应用和响应式系统等多种场景。

2025-12-19 10:24:51 882

原创 Spring AI MCP 客户端 Boot Starter 全解析

SpringAIMCP客户端BootStarter是为SpringBoot应用提供MCP协议客户端自动配置的组件,支持STDIO、SSE和SSEWebFlux三种传输协议,提供SYNC/ASYNC两种客户端类型。具备多实例管理、自动初始化、生命周期管理等核心功能,可与SpringAI工具执行框架集成。通过配置文件可灵活定义连接参数,支持自定义客户端行为,适用于需要与MCP服务器交互的AI应用。组件提供标准版和WebFlux版两种Starter,支持同步/异步通信模式,生产环境推荐使用SSEWebFlux协议

2025-12-19 10:23:43 798

原创 Memory Sharing(MS, 共享记忆)框架

共享记忆(MS)框架通过构建多智能体共享记忆池,解决LLM智能体在开放式任务中示例不足、理解有限的问题。该框架将智能体生成的提示-回答对作为可复用记忆存入全局池,通过动态检索和更新机制增强上下文学习能力。核心组件包括记忆生成、写入和检索,确保高质量记忆的积累和精准匹配。实验表明,MS框架能显著提升智能体在文学创作、逻辑推理等任务中的表现,打破记忆孤岛并降低开放式任务门槛,实现系统的持续优化。

2025-12-18 16:48:38 1270

原创 上下文工程

上下文工程是优化大语言模型(LLM)动态上下文管理的系统性方法,旨在解决智能体在长时运行中的上下文爆炸和性能衰减问题。核心策略包括卸载、缩减、检索、隔离和缓存上下文,通过外部存储、智能摘要、语义搜索等技术降低Token消耗,提升响应效率。典型应用涵盖研究助手、多模态系统和企业自动化场景。多智能体架构通过任务分解和上下文隔离显著提升性能,但面临注意力分散、工具调用复杂等挑战。未来将聚焦自动化管理、多模态融合和标准化框架建设,推动AI智能体向生产级工具演进。

2025-12-18 16:43:37 1133

原创 RAG 查询重写

RAG系统中查询重写技术通过多策略优化解决用户查询模糊、复杂或依赖上下文的问题。多查询重写生成语义相关的查询变体提升召回率;问题分解将复杂查询拆解为子问题逐个检索;Step-Back策略先检索抽象框架再定位细节;指代消解解决对话中的代词指代问题。四种策略协同应用可显著提升检索效果:召回率提升20-30%,复杂查询准确率提升40-50%,专业查询漏检率降低35-45%,对话场景错误率降低50-60%。实现时需根据查询类型灵活组合策略,平衡效果与成本。

2025-12-17 10:33:55 848

原创 多路召回(Multi-Route Retrieval)

多路召回技术通过并行执行多种检索策略(关键词、语义、多模态等),再采用融合算法(RRF、加权排名)生成最终结果,有效解决单一检索的局限性。其架构包含多策略并行检索(稀疏/稠密/多模态)、智能融合算法和动态调优机制。Milvus等工具支持混合检索实现,典型步骤包括数据预处理、索引构建和多路召回执行。该技术优势在于多维度语义覆盖、场景动态适配和成熟工程化落地,适用于医疗、电商等需要高召回率的领域。

2025-12-17 10:31:01 1573

原创 向量数据库索引与检索类型

摘要:向量数据库通过高效索引技术实现语义检索,核心分为数据结构(哈希/树/图/倒排)和压缩(平坦/量化)两大维度。主流组合方案包括IVF-PQ(平衡型)、HNSW-PQ(高维优选)和Vamana(超大规模)。选型需权衡数据量、维度、精度与资源,HNSW现为高维事实标准,IVF-PQ适合内存受限场景,Vamana专注磁盘优化。未来趋势包括硬件加速、多模态索引和自动调参技术。

2025-12-16 10:26:34 698

原创 向量数据库:解锁AI时代的语义搜索

向量数据库是一种专门用于高效存储、索引和搜索高维向量数据的系统,通过AI模型将非结构化数据转化为向量,实现基于语义的相似性检索。与传统数据库不同,向量数据库无需人工标注即可自动关联语义相似的内容。

2025-12-16 10:21:44 768

原创 Java 面试小册 | HashMap 的 put 方法

本文通过面试对话形式解析了Java HashMap的put方法核心机制。重点包括:1)putVal流程(初始化→哈希计算→数据插入→扩容检查);2)扰动算法通过高低位异或增强散列性;3)链表转红黑树需同时满足长度>8且数组>64;4)扩容触发条件为size超过容量×0.75,采用数组翻倍并优化迁移策略。这些源码细节对理解HashMap性能优化至关重要。

2025-12-15 09:24:24 728

原创 一文看懂 Claude Skills 原理

Claude Skills 是 Anthropic 推出的模块化AI能力扩展方案,通过"文件系统封装+渐进式披露"机制,为智能体注入标准化领域知识。其核心特点包括:1) 模块化封装元数据、指令和资源三要素;2) 分层加载机制显著降低token消耗;3) 与MCP工具调用协议形成"知识+工具"协同;4) 支持快速构建智能导购等专业应用。该方案解决了传统智能体知识零散、上下文冗余、复用困难等痛点,已成为工业级AI系统的标配能力。

2025-12-15 09:01:40 1429

原创 工具调用(@Tool)

摘要:SpringAI提供三种工具定义方式(声明式@Tool、编程式MethodToolCallback、动态@Bean),支持信息检索与执行操作两类核心场景。工具通过ChatClient/ChatModel配置,由ToolCallingManager管理执行生命周期,具备自动生成JSONSchema、结果转换、上下文传递等能力。模型仅发起工具调用请求,实际执行由应用完成,确保安全性。支持框架自动执行与手动控制两种模式,提供异常处理和可观测性支持,通过日志和追踪监控工具执行过程。

2025-12-14 10:05:18 878

原创 MCP 实现

MCP(Model Context Protocol)是一种标准化的大语言模型工具调用交互协议,旨在实现AI工具安全高效地调用本地/远程资源。该协议定义了5个核心角色(主机、客户端、服务器、本地/远程数据源),支持两种实现方式:基于stdio的嵌入式本地调用和基于SSE的远程服务调用。MCP通过@Tool注解封装工具方法,实现与FunctionCall类似但更标准化的功能,特别强调通信协议标准化和多场景适配。其核心价值在于提供统一接口、实现业务解耦、确保安全可控,并能促进AI工具生态发展。最佳实践建议工具设

2025-12-14 09:59:33 1068

原创 Chain-of-Thought Prompting(CoT, 管道模式)

摘要:提示链(PromptChain)是大语言模型处理复杂任务的核心方法,通过"分而治之"将任务拆解为独立子问题,构建模块化工作流。其核心价值在于降低认知负荷、提升可解释性和可控性,突破单一提示的局限性。关键技术包括结构化输出、步骤粒度控制和错误重试机制,适用于信息处理、复杂问答、内容生成等场景。未来将向自适应、多智能体和多模态方向发展,成为构建高级AI系统的基础框架。掌握提示链是运用LLM解决复杂问题的工程化思维体现。

2025-12-12 10:30:28 821

原创 MCP 协议 Streamable HTTP 传输层的技术升级

MCP协议引入的StreamableHTTP传输层通过三大创新设计解决了AI通信的核心痛点:统一通信端点简化架构,动态流式传输适配多样化场景,会话状态管理支持断线恢复。性能测试显示,相比传统HTTP+SSE方案,StreamableHTTP在高并发下连接数减少93%,时延波动降低95%,代码量缩减60%,显著提升企业级AI应用的稳定性和开发效率。该方案兼容现有HTTP生态,特别适合金融、医疗等需要高可靠性的场景,以及边缘计算等网络不稳定环境,为AI服务的规模化部署提供了关键通信支撑。

2025-12-12 10:14:58 1104

原创 Reasoning-Acting(ReAct)

摘要:ReAct(推理-行动)是大语言模型智能体实现自主决策的核心范式,通过"思考→行动→反馈"闭环机制,使AI系统具备动态决策、工具集成和适应反馈的能力。该范式包含观察、思考、行动、反馈、状态更新五个步骤,解决了传统LLM在幻觉、工具集成和动态适应等方面的痛点。ReAct适用于复杂问答、任务规划、故障排查等场景,其落地需要合理设计推理Prompt、明确工具参数、设置终止条件和完善错误处理机制。未来ReAct将向多智能体协作、多模态交互和强化学习优化方向发展,是构建高级AI系统的重要基础

2025-12-11 15:58:15 938

原创 AI应用开发

企业级AI系统开发存在两条技术路径:自研/框架开发(如LangChain)与低代码平台(如Dify)。前者适合高定制化需求,提供完全自主的技术栈选择和深度优化能力,但开发成本高;后者侧重快速上线,通过可视化界面降低技术门槛,但灵活性受限。核心差异体现在开发成本、技术控制度、运维复杂度和迭代速度等方面。选型需权衡团队能力、业务复杂度与效率需求:技术团队追求性能优化选自研,非技术团队快速验证选平台。二者在准确性、稳定性和扩展性等维度各具优势。

2025-12-11 15:16:33 511

原创 AI 基础概念

本文系统分析了大型语言模型(LLM)及其关键技术体系。LLM以超大规模参数和海量训练数据为基础,具备跨领域通用能力和涌现特性,但存在高算力需求。围绕LLM的三大关键技术包括:1)RAG通过检索外部知识库解决模型知识过时和幻觉问题;2)记忆机制分为短期会话记忆和长期知识记忆,实现交互连贯性和个性化;3)智能体(Agent)通过工具调用(MCP)和多智能体协作(A2A)形成自主任务处理能力。这些技术共同推动AI从被动响应向主动解决复杂任务进化,构成"思考-记忆-行动-协作"的完整智能系统。

2025-12-10 16:27:16 927 1

超市商品分类管理系统作业

内容概要:超市商品分类管理系统大作业,包含系统结构图、函数调用图和部分功能结构设计图 适用人群:期末大作业 使用场景及目标:快速完成期末作业

2025-12-14

natapp内网穿透工具

内容概要:natapp 是一款轻量型内网穿透工具,可将内网服务(HTTP/HTTPS/TCP/UDP)映射到公网域名,实现外部网络直接访问内网资源,无需复杂配置路由器。 适用人群:开发人员、测试人员、小型团队(如微信生态开发、本地项目调试场景)。 使用场景及目标:用于本地项目公网调试(如微信小程序 / 公众号开发、支付回调测试)、内网服务临时外访、无公网 IP 的远程访问场景,目标是快速打通内网与公网,降低网络配置门槛。 其他说明:支持免费 / 付费套餐,提供固定域名(付费),注册后获取隧道 ID 即可启动,适配 Windows/Mac/Linux 系统。

2025-12-14

Maven构建依赖管理工具

内容概要:Maven 是 Java 项目的构建 + 依赖管理工具,可标准化项目流程、自动下载 / 管理依赖包。 适用人群:Java 开发人员、软件项目团队成员、项目架构师。 使用场景及目标:用于 Java 项目开发 / 协作场景,目标是统一项目结构、简化编译 / 打包流程、提升依赖管理效率。 其他说明:需配置仓库(如国内镜像仓库)以优化依赖下载速度。

2025-12-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除