- 博客(80)
- 收藏
- 关注
原创 DEM 地形分析与水文建模:基于 ArcGIS 的流域特征提取
本文系统介绍了地理信息系统(GIS)技术及ArcGIS软件应用的全流程学习路径。主要内容包括:GIS理论基础与ArcGIS软件操作、空间数据管理与转换、地图制作与发布、数据编辑处理、矢量与栅格空间分析、空间插值方法、DEM三维分析、高级建模工具应用等十大模块。课程涵盖从数据采集、处理到空间分析与三维建模的核心技术,并结合土地适宜性评价、垃圾填埋场选址等实际案例,帮助学习者掌握GIS在资源管理、环境监测等领域的应用方法。通过理论与实践结合的方式,提升空间数据处理与分析能力。
2025-06-11 14:21:05
861
原创 GPT-ArcGIS 在生态评价中的综合应用:多因子权重分析与适宜性制图
本文介绍了ArcGIS与GPT大模型融合的技术框架与应用场景。主要内容包括:1) GPT在GIS数据处理、空间分析和科研绘图全流程中的智能化应用;2) 10大专题技术体系,涵盖AI辅助数据读取、编辑处理、空间分析、遥感分类及二次开发等核心功能;3) 6大综合应用案例,展示土地利用变化、流域水文、生态环境等领域的AI-GIS解决方案。通过Prompt工程优化和Python自动化脚本,帮助用户突破传统GIS操作瓶颈,实现从数据采集到决策支持的智能化升级,为智慧地球建设提供创新技术支撑。
2025-06-11 13:58:19
747
原创 ChatGPT 辅助 PyTorch 开发:从数据预处理到 CNN 图像识别的全流程优化
在人工智能技术爆发的时代背景下,Python 凭借其简洁高效的特性成为机器学习与深度学习的核心工具,而大语言模型(如 ChatGPT、DeepSeek)的兴起则为 AI 开发注入了新动能。本次培训聚焦 “大语言模型 + Python + 深度学习” 的全栈技术体系,系统讲解从数据预处理、模型开发到前沿算法实践的全流程。通过 ChatGPT 辅助代码生成、调试及论文撰写,结合 PyTorch 框架实现经典机器学习算法(决策树、随机森林)与深度学习模型(CNN、RNN、GAN、YOLO),学员将掌握如何利用大语
2025-06-09 16:45:51
813
原创 基于字节 Coze 的科研智能体开发:从知识库构建到多轮对话优化
在人工智能技术高速发展的背景下,大语言模型(LLM)与智能体(Agent)技术已成为科研创新与智能化转型的核心驱动力。本次培训聚焦 AI 智能体开发与大语言模型的本地化部署优化,系统讲解从智能体构建、开源模型选型到 RAG(检索增强生成)、微调(Fine-Tuning)等关键技术。通过字节 Coze、百度、智谱清言等多平台实操,学员将掌握智能体的记忆管理、工具调用及多模态交互能力,同时深入理解 LangChain 框架在模型集成中的应用。
2025-06-09 16:13:11
1113
原创 ArcGIS 与 HEC-RAS 协同:流域水文分析与洪水模拟全流程
本文系统介绍了洪水危险性及风险评估的技术方法与应用流程。通过ArcGIS水文分析实现流域特征提取,包括填洼、流向计算、河网划分等关键步骤;结合HEC-RAS水力学模型进行洪水淹没动态模拟,涵盖稳定流/非稳定流计算、参数校正及危险性制图。重点阐述了GIS与水文模型协同技术,包括一键式自动化评估工具应用、多源数据融合方法,以及基于淹没模拟结果的人口房屋损失统计、风险评估报告生成等实务操作。全文贯穿20-100年一遇洪水模拟案例,为城市防洪规划与应急管理提供完整的技术解决方案。
2025-05-26 14:32:41
871
原创 SWMM 与 GIS 协同建模:城市排水系统数字化构建全流程
本文系统介绍城市内涝模拟与海绵城市建设的核心技术方法,重点包括:1)基于CAD/GIS的SWMM模型快速构建技术,实现管网拓扑提取与专题图制作;2)一维二维耦合模拟技术,通过慧天软件实现内涝动态分析,生成淹没深度专题图与统计曲线;3)海绵城市关键指标(年径流控制率、污染物削减率)量化计算方法;4)SWMM二次开发技术,包括动态链接库调用与结果文件解析。该技术体系为城市排水系统优化和海绵城市规划提供科学决策支持。
2025-05-26 13:42:53
894
原创 AI 驱动近红外光谱预处理:从数据清洗到特征工程的自动化
本文系统介绍了AI技术在近红外光谱分析中的应用,涵盖从数据预处理到模型优化的全流程。通过大语言模型(如ChatGPT和DeepSeek)的辅助,研究者可以高效生成代码、调试程序,并优化数据处理流程。文章详细讲解了传统机器学习算法(如多元线性回归、随机森林、XGBoost)和深度学习模型(如CNN、BP神经网络)在光谱分析中的实践应用,并结合遗传算法、PCA等高级技术进行特征选择和降维。此外,PyTorch框架的使用也被纳入,帮助读者掌握深度学习模型的构建与优化。通过AI与近红外光谱的深度融合,本文旨在提升研
2025-05-23 11:32:51
1717
原创 Transformer 模型进化:从 BERT 到 ViT 的多领域应用实践
深度学习技术以Transformer为核心,推动人工智能进入多模态融合的新纪元。Transformer通过注意力机制革新了特征提取范式,广泛应用于自然语言处理(NLP)和计算机视觉(CV)领域。BERT、GPT、ViT等模型在各自领域展现出强大性能。生成式模型如VAE、GAN、扩散模型在数据生成方面取得突破,目标检测技术从R-CNN演进至DETR,实现精度与速度的平衡。图神经网络(GCN/GAT)和强化学习(DQN)在非结构化数据和复杂系统优化中发挥重要作用。物理信息神经网络(PINN)将微分方程嵌入神经网
2025-05-23 11:24:29
1099
原创 遥感技术在碳储量估算中的应用与 AI 大模型优化
在全球气候变化背景下,遥感技术与AI大模型的结合为碳监测提供了创新解决方案。本文系统解析了从生态系统碳库估算到大气温室气体反演的全流程,结合CASA、FLUS、DNDC等模型实践,展示了AI大模型在数据处理、模型构建及科研效率提升中的前沿应用。通过多源遥感数据与生态模型的融合,实现了农田、流域尺度的碳循环模拟,为碳领域研究提供了技术支撑与创新思路。
2025-05-22 16:32:58
1063
原创 机器学习与深度学习算法:从决策树到 GAN 的原理与 PyTorch 实现
本文系统介绍了Python与PyTorch在机器学习和深度学习中的应用。首先,文章概述了Python在人工智能领域的核心地位及其简洁性与强大生态,并强调了PyTorch作为主流框架的优势。接着,详细讲解了Python与PyTorch的基础知识,包括环境搭建、语法核心、科学计算库的使用,以及PyTorch的张量操作、自动求导机制等。随后,文章深入探讨了传统机器学习模型(如决策树、随机森林)与深度学习架构(如CNN、RNN、GAN)的核心算法,并通过案例实操展示了从数据预处理到模型优化的完整技术链。
2025-05-22 16:12:20
981
原创 CESM2.0 全流程解析:从环境搭建到多模块耦合模拟
地球系统模式(CESM)是研究全球气候变化的重要工具,最新版本 CESM2.0 及后续更新通过强化物理过程描述,如 CLUBB 边界层方案和 CAM6-chem 化学模块,为 CMIP6 研究提供了强大支持。本文系统介绍了 CESM 的全流程应用,包括环境搭建、单模块运行、多模块耦合、代码修改与结果分析。重点内容包括:CESM 模型基础与环境搭建,涉及 Linux 系统环境与编译工具链;耦合运行与数据处理,强调配置文件设置与结果验证;模型进阶开发与应用实践,如 CLM 模块的单点与区域模拟、代码修改与优化。
2025-05-21 13:49:31
749
原创 大模型时代,Python 近红外光谱与 Transformer 模型:学习的必要性探究
在大语言模型盛行的时代,Python近红外光谱技术和Transformer模型仍然具有重要的学习价值。大语言模型如ChatGPT在自然语言处理领域表现出色,但在物质检测与分析方面存在局限。Python近红外光谱技术通过处理近红外光谱数据,广泛应用于食品、制药和农业等领域,提供快速、无损的物质成分检测。Transformer模型则凭借其自注意力机制,在自然语言处理、计算机视觉和时间序列预测等任务中表现出色,并可用于优化近红外光谱分析。二者的结合能够进一步提升物质分析的精度与效率,为科研与产业发展开辟新的道路。
2025-05-21 11:56:57
522
原创 Gephi 可视化:贝叶斯网络结构的交互式解析
本文介绍了贝叶斯网络在生态、环境及地学研究中的应用,特别是通过R语言实现贝叶斯网络建模的全流程。贝叶斯网络结合图论与概率理论,能够有效揭示变量间的因果关系,突破传统统计方法的局限。文章详细阐述了贝叶斯网络的基础理论、R语言实现方法(如bnlearn包的使用),以及从静态到动态、从离散到连续的网络建模过程。此外,还介绍了动态贝叶斯网络(DBN)和混合模型的应用,以及如何利用Gephi进行网络可视化。文章通过真实案例展示了贝叶斯网络在复杂场景中的拓展应用,如高维数据处理、模型不确定性分析等,为科学决策提供了量化
2025-05-20 10:47:11
590
原创 ChatGPT 与 DeepSeek 结合:提示词优化与代码生成的双重突破
1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)2、利用ChatGPT-4o实现联网检索文献3、利用ChatGPT-4o阅读与总结分析学术论文内容(论文主要工作、创新点、局限性与不足、多文档对比分析等)4、利用ChatGPT-4o解读论文中的系统框图工作原理5、利用ChatGPT-4o解读论文中的数学公式含义6、利用ChatGPT-4o解读论文中图表中数据的意义及结论。
2025-05-20 10:28:27
806
原创 AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
Copula 理论在数据科学领域中提供了一种创新的方法来分析变量间的复杂相关性,特别是在处理非线性、非对称依赖关系时表现出显著优势。该理论通过分离边缘分布与依赖结构,为多元数据建模提供了强大工具。从基础的二元 Copula 到高维 Vine Copula,Copula 技术已广泛应用于水文、金融、工程等多个领域。结合 AI 大模型的自动化能力,如自然语言处理和代码生成,Copula 建模的效率得到显著提升,推动了从理论研究到实际应用的跨越。本文综述了 Copula 的核心技术、高维扩展及其与 AI 的融合,
2025-05-16 10:12:13
1091
原创 SWMM 二次开发进阶:从代码编译到多方案自动化模拟的技术突破
本文详细介绍了SWMM(Storm Water Management Model)在城市排水系统建模、防涝评估及海绵城市规划中的应用。通过GIS与CAD数据的整合,SWMM能够高效处理管网节点、管段及汇水子区域的生成与参数计算,提升建模效率。在排水防涝方面,SWMM通过模拟暴雨径流过程,识别溢流节点与瓶颈管段,为城市内涝风险评估提供依据。在海绵城市设计中,SWMM支持对LID措施的模拟,量化评估径流控制与污染削减效果。此外,SWMM的二次开发功能为工程优化提供了定制化解决方案,增强了模型的自动化与科学决策能
2025-05-15 13:59:54
785
原创 AI 驱动近红外光谱分析:从数据预处理到模型构建的全流程革新
本文系统介绍了人工智能(AI)与Python在近红外光谱分析中的全流程应用,涵盖从基础编程到高阶模型实践的多个技术点。通过ChatGPT、DeepSeek等大语言模型,结合PyTorch框架,文章详细讲解了数据预处理、特征提取、模型优化等关键步骤,并展示了多元线性回归、BP神经网络、支持向量机(SVM)、决策树、随机森林、Adaboost、XGBoost、LightGBM、遗传算法、卷积神经网络(CNN)等多种机器学习与深度学习模型在近红外光谱分析中的应用。文章还提供了AI编程环境搭建、代码生成与调试、模型
2025-05-15 11:54:07
1159
原创 ArcGIS 助力水土流失研究:从基础到模拟的深度探索
摘要:水土流失问题对我国生态、饮水、防洪和粮食安全构成严重威胁。随着GIS技术的发展,ArcGIS与InVEST、RUSLE等模型的结合为水土流失研究提供了有效手段。文章详细介绍了ArcGIS基础与数据库建设、水土流失模型与数据处理、专题地图制作与案例分析等关键技术环节。通过构建水土保持空间数据库、运用ArcGIS进行数据处理和模型模拟,能够精准掌握水土流失规律,为水土保持工作提供科学依据。文章还涵盖了矢量数据处理、DEM数据处理、GPS数据处理及遥感图像处理等内容,并通过实际案例展示了研究成果,为水土流失
2025-05-13 09:48:30
891
原创 解锁生命周期评价密码:OpenLCA、GREET 与 R 语言的融合应用
在全球环境保护和可持续发展的背景下,生命周期评价(LCA)作为一种关键工具,广泛应用于评估产品或服务的环境影响。LCA通过分析产品从原材料获取到最终处置的全过程,为制定环保策略和优化生产流程提供科学依据。OpenLCA、GREET和R语言等工具的应用,进一步拓展了LCA的实践范围和深度,帮助研究人员精准量化环境影响,推动各行业向绿色和可持续方向发展。生命周期评价的理论基础、常用指标和分析方法是开展相关研究和实践的基石,而基于OpenLCA与GREET的模型实践则通过具体案例(如矿泉水瓶、热电厂、生物质固体颗
2025-05-13 09:40:01
1198
原创 解锁遥感数据密码:DeepSeek、Python 与 OpenCV 的协同之力
本文介绍了空天地遥感数据的分析与应用,强调了其在城市规划、农业生产、生态保护和灾害监测等领域的重要性。文章详细阐述了遥感数据处理的技术基础,包括机器学习、DeepSeek、Python和OpenCV的应用,以及遥感数据的获取、处理与计算方法。此外,文章还探讨了多源数据的分类与检测实践,如农作物分类、火灾监测和水体监测,并介绍了多源数据联合分析与案例拓展,展示了遥感技术在农业、城市发展和生态环境等领域的广泛应用。最后,文章提供了工具与开发环境的搭建指南,涵盖了机器学习基础、DeepSeek应用、Python和
2025-05-12 10:33:39
1456
1
原创 解锁 AI 新势力:智能体与大语言模型融合探秘
在人工智能快速发展的背景下,大语言模型与智能体技术的融合正深刻改变多个领域的发展格局。大语言模型凭借其强大的语言理解和生成能力,为智能体的构建提供了核心支持,而智能体则通过大语言模型实现了更加智能化和多样化的应用。掌握智能体开发与大语言模型的相关技术,成为提升竞争力的关键。智能体开发的基础与实践包括理解智能体概念、类型及构建步骤,并通过不同平台(如字节Coze、百度、智谱清言等)进行实践操作。大语言模型的应用与开发则涉及LangChain框架的使用、数据集构建、模型训练与优化等全流程开发。技术融合与拓展学习
2025-05-12 10:17:32
722
原创 PLUS-InVEST 模型与 AI 协同:推动生态研究创新发展
在全球生态环境问题日益严峻的背景下,合理规划土地资源和有效保护生态系统服务成为关键议题。传统土地利用规划方法难以应对复杂的人地关系挑战,而AI技术与生态模型的融合为解决这一难题提供了新的契机。通过结合PLUS-InVEST模型,利用AI强大的数据处理和分析能力,能够更精准地模拟土地利用变化对生态系统服务的影响,为区域可持续发展提供科学依据。研究内容包括土地利用与生态系统服务的概念界定、地理数据处理与分析、PLUS和InVEST模型的构建与模拟、生态系统服务评估以及AI辅助下的时空变化与驱动机制分析。AI技术
2025-05-09 16:21:14
1008
原创 探秘 InSAR:数据处理与形变信息提取全解析
合成孔径雷达干涉测量(InSAR)技术在现代测绘和地理信息领域具有重要应用,其全天时、全天候的监测能力及高精度地表形变信息获取能力,使其广泛应用于地质灾害监测、大型工程建设等领域。本文详细介绍了InSAR技术的原理、数据处理方法及实际应用,包括星载与地基InSAR系统的发展、InSAR成像与测量原理、数据处理环境搭建与软件操作、SAR影像与DEM数据获取及前处理技术、地形三维重建、DInSAR与时序InSAR形变信息提取等。通过实际案例分析,如北京、上海、天津等地的地表沉降监测,以及滑坡、高铁桥梁监测等领域
2025-05-09 15:54:09
1058
原创 R 语言机器学习:为遥感数据处理开启新视角
在当今科技快速发展的时代,遥感技术为生态学研究提供了海量的数据资源,而机器学习算法则成为挖掘这些数据潜在价值的有力工具。R 语言凭借其强大的数据处理、分析和可视化能力,在遥感数据的机器学习分析中占据重要地位。通过 R 语言进行机器学习遥感数据处理与模型空间预测,能够深入探索生态现象背后的规律,为生态保护、资源管理等提供科学依据。R 语言与遥感数据处理基础是开展后续研究的基石。了解遥感数据在生态学的应用及常见算法,有助于明确研究方向和选择合适的技术手段。
2025-05-08 14:30:29
668
原创 AquaCrop 模型新视角:多技术助力农业精准水管理
1.AquaCrop模型的应用范围2.模型计算框架3.模型水分循环原理4.模型营养循环原理4.模型输入数据要求5.模型应用实例分析。
2025-05-08 14:20:46
956
原创 空间数据分析新趋势:AI 与 ArcGIS Pro 的协同创新
1.1 人工智能(AI)、机器学习、深度学习及大模型1.2 目前常用大模型介绍1.3 ChatGPT简介1.4 国内大模型简介1.5 prompt的使用技巧1.6 案例:AI(DeepSeek、ChatGPT)支持下的空间数据处理及分析(直接分析和间接分析)
2025-05-07 11:04:51
1187
原创 ChatGPT-4o:临床医学科研与工作的创新引擎
1、2024 AIGC技术最新进展介绍(生成式人工智能的基本概念与原理、文生视频模型OpenAI Sora vs.Google Veo)2、国内外大语言模型(ChatGPT-4o- 4o、Gemini、Claude、Llama3、温馨一言、星火、通义千问、Kimi、智谱清言等)对比分析3、Llama3开源大语言模型的本地部署、对话与微调训练本地数据4、ChatGPT-4o对话初体验(注册与充值、购买方法)
2025-05-07 10:41:29
1344
原创 AI 与 Python 助力:全球气候变化驱动因素预测探秘
全球气候变化已成为当今社会面临的严峻挑战,其驱动因素复杂多样,对生态系统、人类生活产生了深远影响。在应对气候变化的过程中,准确分析和预测这些驱动因素的趋势至关重要。借助数据科学与人工智能技术,尤其是 Python 编程、机器学习和深度学习算法,能够从海量气候数据中挖掘有价值的信息,为科学研究和政策决策提供有力支撑。气候变化驱动因素与数据科学基础是研究的根基。了解全球气候变化及相关驱动因素,如温室气体排放、气溶胶浓度等,有助于把握气候变化的本质和原因。
2025-05-06 11:45:42
1019
原创 大涡模拟技术:WRF 与 PALM 构建城市气候研究新视角
1、WRF模型概述1)模型的发展历程2)模型的基本框架2、PALM模型概述1)模型的基本框架2)模型架构与计算网格3)动力学核心4)湍流模块。
2025-05-06 11:35:53
629
原创 AI 助力 Python:长时序植被遥感动态分析与生态评估
1、常见卫星遥感反射率数据Landsat系列反射率数据Sentinel系列卫星数据MODIS卫星反射率数据GF/HJ/ZY…系列卫星数据2、常见植被参数遥感产品植被指数遥感产品植被叶面积指数遥感产品植被总初级生产力遥感产品植被净初级生产力遥感产品植被光合有效辐射吸收比遥感产品3、常用气象水文数据集ERA5及其ERA5_Land数据集(包括气温、降水、风速和土壤湿度等变量)CHIPRS、TRMM以及GPM降水数据集GLDAS数据集(包括土壤湿度、气温和降水等变量)
2025-04-30 17:03:44
1164
原创 ArcGIS+GPT:多领域地理分析与决策新方案
在数字化和智能化快速发展的时代,地理信息系统(GIS)与生成式预训练模型(GPT)的融合成为推动众多领域进步的关键力量。ArcGIS 作为 GIS 领域的佼佼者,具备强大的空间数据处理、分析和可视化能力,广泛应用于城市规划、环境监测、交通管理等多个学科领域。而 GPT 在自然语言处理、文本生成等方面的优势,为 ArcGIS 的智能化发展开辟了新方向。二者的融合为科研人员、专业从业者提供了更高效、智能的工具,能够更深入地挖掘地理数据价值,为决策提供有力支持。
2025-04-30 16:52:32
1163
原创 R 语言赋能森林生态研究:从数据处理到结果呈现
森林生态系统作为地球上最重要的生态系统之一,其结构、功能与稳定性对于维持生物多样性、促进生态平衡和保障人类福祉意义重大。在生态学研究不断深入的当下,准确理解和评估森林生态系统的这些关键特性,成为了科研工作者和生态保护者的重要任务。R 语言凭借其强大的数据处理、分析和可视化能力,为森林生态系统研究提供了高效且全面的技术支持,能够助力研究者深入剖析森林生态系统的内在机制和外在表现。R 语言与森林生态数据处理基础是开展研究的前提。
2025-04-29 17:56:10
914
原创 解锁植被参数反演密码:AI 与 Python 的融合之道
在全球气候变化的大背景下,准确获取植被参数对于理解生态系统的变化和功能至关重要。植被参数遥感反演技术作为获取这些参数的重要手段,正面临着诸多挑战。而 Python 与 AI 技术的融合,为植被参数遥感反演带来了新的机遇和解决方案。通过运用这些先进技术,能够更高效地处理和分析遥感数据,提升植被参数反演的精度和可靠性。植被参数遥感反演基础是整个研究的基石。了解国内外主流卫星传感器,有助于选择合适的数据来源,获取高质量的遥感数据。
2025-04-29 11:38:19
920
原创 SCI 论文撰写秘籍:从准备到发表全攻略
在学术研究领域,SCI 论文作为科研成果的重要展示平台,其写作质量和发表情况直接关系到科研人员的学术影响力和职业发展。然而,撰写一篇高质量的 SCI 论文并非易事,它涉及从前期准备、写作过程到投稿发表的一系列复杂环节。随着 AI 技术的快速发展,其在论文写作中的辅助作用日益凸显,为科研人员提供了新的工具和思路。SCI 论文写作前期准备与工具运用是撰写高质量论文的基础。熟练掌握文献检索、管理和计量分析方法,能够帮助科研人员快速获取有价值的文献资源,梳理研究脉络,把握研究热点和趋势。
2025-04-28 17:42:50
1062
原创 深度学习前沿探秘:Transformer 模型与多领域应用
随着人工智能技术的飞速发展,深度学习已成为推动各领域创新的核心力量。在众多深度学习技术中,Transformer 模型及相关前沿技术展现出强大的潜力,广泛应用于自然语言处理、计算机视觉、时间序列分析等多个领域。深入研究这些技术,不仅有助于把握人工智能发展的脉搏,还能为解决实际问题提供更有效的方案。深度学习核心模型与机制剖析是深入理解深度学习的关键。注意力机制作为现代深度学习的核心,其原理、类型及优化变体影响着模型的性能和效果。
2025-04-28 17:08:08
1325
原创 ArcGIS:开启洪水灾害普查、评估与制图新征程
2.1 ArcGIS界面及数据加载2.2 ArcGIS常见数据格式2.3基于Geodatabase的洪水灾害数据库构建2.4洪水相关数据的管理2.5 ArcGIS文档保存2.6 洪水普查案例:成果要求的电子数据制作(1)
2025-04-27 17:06:49
671
原创 一文读懂:防洪评价报告编制与洪水建模核心要点
数值模型软件概述及数据基础处理1、MIIKE ZERO概述2、二维模型边界文件的提取方法3、二维模型网格的多种制作方法4、地形文件的获取或转换方法5、地形的插值方法。
2025-04-27 16:50:11
623
原创 【大模型ChatGPTDeepSeek与python】最新AI与Python在地球科学(气象、气候变化、水文、生态等)多源数据交叉融合技术应用(时空数据处理、预测模型构建、时间序列分析、空间统计建模)
在地球科学领域,气象、气候变化、水文、生态等各个分支并非孤立存在,它们相互交织、彼此影响,共同塑造着我们赖以生存的地球环境。然而,这些不同领域所产生的数据,无论是在数据类型、格式,还是在时空分辨率、数据量等方面,都存在着显著差异,犹如一座座信息孤岛,阻碍了对地球系统全面、深入的理解。1、监督学习:回归与分类算法(线性模型、支持向量机、随机森林、梯度提升树、深度学习)1、常见地球科学数据类型:站点观测、格点数据、再分析数据、遥感影像、模式输出。
2025-04-11 16:33:12
1563
原创 【降尺度】AI+CMIP6数据分析与可视化、降尺度技术与气候变化的区域影响、极端气候分析
接下来,让我们一同深入了解 CMIP6 数据分析与可视化、降尺度技术与气候变化的区域影响、极端气候分析这三大关键领域,探寻气候变化背后的真相与启示。对这些数据的分析旨在挖掘气候变化的规律和特征,如通过分析温度、降水等变量的时空变化,了解全球气候的长期趋势和短期波动。可视化则是将复杂的数据以直观的图表、地图等形式呈现,例如用折线图展示全球平均气温的上升趋势,用地图展示不同地区降水的变化分布,帮助科研人员和公众更直观地理解气候变化的模式和趋势,发现数据中隐藏的信息和规律。
2025-04-11 16:16:52
1164
原创 R 语言在气象、水文中有重要的数据处理、结果分析及绘图实践技术应用
R语言与 R软件简介R 在各行业的应用R 与其他语言的比较及其在数据分析与作图上的优势R 在地学中的应用以及R 在气象水文中的应用出发之前——用什么来同时记录我们的数据、代码及结果——Rmd与 knitr介绍介绍一种方便的理念——Reproducible Research和Rmd及knitr“原始数据保平安”与R-Rmd、Python-JupyterRmd 的适用范围:笔记、PPT、互动网页、报告、论文Rmd知识讲解:结构、用法。
2025-04-09 18:27:08
971
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人