大语言模型应用指南:自然语言处理的发展历程
关键词:大语言模型、自然语言处理、Transformer、BERT、GPT、LLM应用、NLP发展趋势
1. 背景介绍
自然语言处理(Natural Language Processing,NLP)作为人工智能领域的重要分支,致力于使计算机能够理解、处理和生成人类语言。从早期基于规则的系统到如今深度学习驱动的强大模型,NLP技术经历了飞速发展。近年来,大语言模型(Large Language Model,LLM)的出现,标志着NLP领域迈入了一个新的里程碑。
LLM 拥有数十亿甚至数千亿个参数,能够处理海量文本数据,学习复杂的语言模式和语义关系。它们在文本生成、翻译、问答、代码生成等任务上展现出惊人的能力,并逐渐渗透到各个领域,例如搜索引擎、聊天机器人、教育、医疗等。
2. 核心概念与联系
2.1 自然语言处理 (NLP)
自然语言处理 (NLP) 是人工智能的一个子领域,旨在使计算机能够理解、解释、生成和转换人类语言。NLP的任务包括:
- 文本分类: 将文本自动分类到预定义的类别中,例如情感分