基于深度学习的文本情感分析

基于深度学习的文本情感分析

关键词:深度学习、文本情感分析、自然语言处理、卷积神经网络、循环神经网络、BERT、情感分类、情绪识别

1. 背景介绍

文本情感分析(Text Sentiment Analysis),又称情感计算(Sentiment Computing),是自然语言处理(NLP)领域的重要研究方向之一。它旨在从文本数据中识别和理解作者表达的情感倾向,例如正面、负面或中立。随着互联网和社交媒体的蓬勃发展,海量文本数据被不断产生,文本情感分析技术在各个领域都得到了广泛应用,例如:

  • 市场营销: 分析客户对产品或服务的评价,了解市场趋势和消费者需求。
  • 品牌监控: 监测品牌形象和口碑,及时应对负面舆情。
  • 社交媒体分析: 了解用户对特定事件或话题的看法,进行舆情分析和趋势预测。
  • 客户服务: 自动识别客户情绪,提供更精准和人性化的服务。
  • 金融领域: 分析市场情绪,预测股票价格走势。

传统的文本情感分析方法主要依赖于规则匹配和词袋模型等方法,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值