基于深度学习的文本情感分析
关键词:深度学习、文本情感分析、自然语言处理、卷积神经网络、循环神经网络、BERT、情感分类、情绪识别
1. 背景介绍
文本情感分析(Text Sentiment Analysis),又称情感计算(Sentiment Computing),是自然语言处理(NLP)领域的重要研究方向之一。它旨在从文本数据中识别和理解作者表达的情感倾向,例如正面、负面或中立。随着互联网和社交媒体的蓬勃发展,海量文本数据被不断产生,文本情感分析技术在各个领域都得到了广泛应用,例如:
- 市场营销: 分析客户对产品或服务的评价,了解市场趋势和消费者需求。
- 品牌监控: 监测品牌形象和口碑,及时应对负面舆情。
- 社交媒体分析: 了解用户对特定事件或话题的看法,进行舆情分析和趋势预测。
- 客户服务: 自动识别客户情绪,提供更精准和人性化的服务。
- 金融领域: 分析市场情绪,预测股票价格走势。
传统的文本情感分析方法主要依赖于规则匹配和词袋模型等方法,