强化学习:状态-动作对的选择
关键词:强化学习,状态-动作对,选择策略,价值函数,优化算法
1. 背景介绍
1.1 问题由来
强化学习(Reinforcement Learning, RL)是机器学习中的一个重要分支,主要研究智能体在复杂环境中通过与环境交互来学习最优策略以最大化长期奖励的问题。在强化学习中,智能体(agent)通过观察环境状态(state)并执行一系列动作(action),不断调整其策略,以逐步逼近最优策略。而如何选择最优动作,正是强化学习的核心问题之一。
在早期研究中,人们通常通过Q-learning等基于值的算法来解决状态-动作对的选择问题。但这些算法存在计算复杂度高、收敛速度慢等问题。为了提高效率,另一种基于策略的方法应运而生,即策略梯度(Policy Gradient)算法。
策略梯度方法通过直接优化策略函数(Policy Function),而不是值函数(Value Function),来提升策略的性能。这一方法的核心思想是通过优化策略,使智能体能够以更少的样本量,更快的速度逼近最优策略。