强化学习Reinforcement Learning中的蒙特卡洛方法实战技巧
1. 背景介绍
在强化学习(Reinforcement Learning, RL)中,蒙特卡洛(Monte Carlo, MC)方法是一类基于样本统计的方法,通过大量模拟运行和统计分析,直接估计值函数(Value Function),进而辅助选择最优策略。其核心思想是通过模拟环境,积累历史经验,逐步改善决策效果,最终找到最优策略。在过去的几十年中,蒙特卡洛方法经历了从随机抽样到重要性采样,从序贯策略到混合策略的演变,从单步蒙特卡洛到多步蒙特卡洛的发展,不断推动强化学习理论和技术进步。本文旨在介绍蒙特卡洛方法的基本原理、关键算法和实战技巧,并结合具体案例进行详细讲解。
2. 核心概念与联系
2.1 核心概念概述
蒙特卡洛方法在强化学习中的应用主要分为两大类:蒙特卡洛控制(Monte Carlo Control)和蒙特卡洛评估(Monte Carlo Estimation)。
- 蒙特卡洛控制:通过蒙特卡洛模拟,直接从经验数据中学习到