遗传算法(Genetic Algorithms) - 原理与代码实例讲解
关键词:遗传算法, 进化计算, 优化算法, 算法优化, 生物启发算法
1. 背景介绍
遗传算法(Genetic Algorithms, GA)是一种基于自然进化和生物遗传机制的搜索优化算法,由John Holland于1975年提出。遗传算法模拟了自然界中生物进化过程,通过不断迭代和选择,逐步优化问题的解空间,从而达到最优化目标。遗传算法被广泛应用于各种复杂问题的求解,如函数优化、组合优化、图论问题、机器学习、模式识别等。
1.1 问题由来
遗传算法的设计灵感来自于自然界中生物的进化过程。在自然界中,生物种群的进化遵循以下几个原则:
- 遗传(遗传物质从上一代传递到下一代)
- 变异(基因突变的随机性)
- 选择(种群中优秀的个体更容易生存和繁殖)
遗传算法将这些原则应用于求解优化问题的算法中。算法通过随机生成一组解,并根据某些适应度函数(fitness function)对它们进行评估和选择,然后通过交叉和变异操作,生成新的解。这些操作被反复执行ÿ