遗传算法(Genetic Algorithms) 原理与代码实例讲解

遗传算法(Genetic Algorithms) - 原理与代码实例讲解

关键词:遗传算法, 进化计算, 优化算法, 算法优化, 生物启发算法

1. 背景介绍

遗传算法(Genetic Algorithms, GA)是一种基于自然进化和生物遗传机制的搜索优化算法,由John Holland于1975年提出。遗传算法模拟了自然界中生物进化过程,通过不断迭代和选择,逐步优化问题的解空间,从而达到最优化目标。遗传算法被广泛应用于各种复杂问题的求解,如函数优化、组合优化、图论问题、机器学习、模式识别等。

1.1 问题由来

遗传算法的设计灵感来自于自然界中生物的进化过程。在自然界中,生物种群的进化遵循以下几个原则:

  • 遗传(遗传物质从上一代传递到下一代)
  • 变异(基因突变的随机性)
  • 选择(种群中优秀的个体更容易生存和繁殖)

遗传算法将这些原则应用于求解优化问题的算法中。算法通过随机生成一组解,并根据某些适应度函数(fitness function)对它们进行评估和选择,然后通过交叉和变异操作,生成新的解。这些操作被反复执行ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值