剪枝技术在图神经网络中的创新应用
关键词:图神经网络,剪枝,模型压缩,加速推理,深度学习
1. 背景介绍
1.1 问题由来
图神经网络(Graph Neural Network, GNN)作为深度学习的一种重要分支,近年来在图数据处理和分析中取得了显著进展。然而,由于图神经网络的参数量往往非常庞大,导致其推理计算开销巨大,难以在实际应用中大范围部署。同时,模型过大的参数量也导致其在大规模数据上的泛化性能不足,容易出现过拟合。为此,亟需研究一种方法,既能降低图神经网络的参数量,又能提升模型的推理速度和泛化能力。
剪枝技术应运而生,成为提升图神经网络性能的一种重要手段。剪枝技术通过对网络中冗余连接或参数的移除,减少模型的计算量,进而加快推理速度,并提高模型的泛化性能。
1.2 问题核心关键点
剪枝技术的核心在于如何判断哪些连接或参数是无用的,并安全地将其删除。传统的剪枝方法包括结构剪枝、权值剪枝和混合剪枝。结构剪枝关注于移除网络中的冗余结构,而权值剪枝则是移除网络中的冗余权值。混合剪枝综合考虑结构和权值,对整个网络进行优化。
在图神经网络中,剪枝技术面临的挑战更多。由于图神经网络是基于图结构建模的&#