基于数据挖掘技术的疫情后就业情况分析
1. 背景介绍
1.1 疫情背景
新冠疫情自2019年底暴发以来,迅速在全球范围内扩散,对全球经济社会造成巨大冲击。各国政府采取了一系列紧急措施,包括封锁、限制聚集、关闭学校和公共场所等,以控制疫情的传播。这些措施虽然有效抑制了病毒的扩散,但也对经济发展和社会生活造成了深远影响,特别是就业市场的波动和失业率的上升。
1.2 数据挖掘与就业分析
数据挖掘是从大规模数据中提取有用信息和知识的过程。它通过构建数据模型,使用统计、机器学习等方法,揭示数据背后的规律和趋势。在就业分析领域,数据挖掘可以帮助我们理解疫情对就业市场的影响,预测未来的就业趋势,为政府和企业提供决策支持。
2. 核心概念与联系
2.1 核心概念概述
- 数据挖掘:从数据中提取有用信息、知识和模式的过程,包括数据预处理、特征工程、模型训练、模型评估等步骤。
- 就业分析:通过统计和机器学习方法,分析就业市场变化趋势,预测未来就业情况,为政策制定和企业决策提供支持。
- 时间序列分析<