基础模型的可解释性需求

基础模型的可解释性需求

关键词:可解释性, 机器学习, 深度学习, 人工智能, 透明度, 模型复杂度, 算法透明度, 用户信任

1. 背景介绍

1.1 问题由来

随着人工智能(AI)技术在各行各业的广泛应用,深度学习模型的可解释性问题逐渐受到越来越多的关注。深度学习模型,尤其是复杂的神经网络模型,虽然在预测和推理任务上取得了显著的成果,但由于其高度的复杂性和黑箱特性,使得模型的决策过程难以被理解和解释。这种缺乏透明度的模型不仅限制了其应用范围,还引发了用户对AI系统的信任度降低、责任难以归属等问题。

1.2 问题核心关键点

深度学习模型的可解释性问题主要体现在以下几个方面:

  • 模型复杂度高:深度神经网络通常具有上亿个参数,结构复杂,难以直观理解。
  • 缺乏透明度:模型训练过程完全由算法决定,难以手动调节,其内部状态和逻辑难以解释。
  • 决策依赖性强:模型决策过程高度依赖输入特征,不同特征组合可能导致截然不同的输出,缺乏一致性。
  • 用户不信任:用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值