基础模型的可解释性需求
关键词:可解释性, 机器学习, 深度学习, 人工智能, 透明度, 模型复杂度, 算法透明度, 用户信任
1. 背景介绍
1.1 问题由来
随着人工智能(AI)技术在各行各业的广泛应用,深度学习模型的可解释性问题逐渐受到越来越多的关注。深度学习模型,尤其是复杂的神经网络模型,虽然在预测和推理任务上取得了显著的成果,但由于其高度的复杂性和黑箱特性,使得模型的决策过程难以被理解和解释。这种缺乏透明度的模型不仅限制了其应用范围,还引发了用户对AI系统的信任度降低、责任难以归属等问题。
1.2 问题核心关键点
深度学习模型的可解释性问题主要体现在以下几个方面:
- 模型复杂度高:深度神经网络通常具有上亿个参数,结构复杂,难以直观理解。
- 缺乏透明度:模型训练过程完全由算法决定,难以手动调节,其内部状态和逻辑难以解释。
- 决策依赖性强:模型决策过程高度依赖输入特征,不同特征组合可能导致截然不同的输出,缺乏一致性。
- 用户不信任:用