多模态大模型:技术原理与实战 ChatGPT的诞生
1. 背景介绍
1.1 问题由来
在过去十年中,深度学习技术取得了革命性的进展,尤其是以卷积神经网络(CNN)和循环神经网络(RNN)为代表的神经网络结构,在计算机视觉(CV)和自然语言处理(NLP)等领域取得了显著的突破。然而,现实世界的信息往往是多模态的,单一模态的深度学习模型难以满足多模态数据的多样性和复杂性需求。
为了解决这一问题,研究人员提出并验证了多模态深度学习模型,其核心思想是整合来自不同模态(如文本、图像、音频等)的信息,构建统一的语义空间,从而提高模型对真实世界的理解和建模能力。多模态学习在视觉-语言融合、跨模态检索、视频内容理解等方面展现出了卓越的性能,并逐渐成为人工智能领域的重要研究热点。
2. 核心概念与联系
2.1 核心概念概述
为了深入理解多模态大模型的技术原理和实战应用,我们需要引入以下核心概念:
- 多模态深度学习:指结合文本、图像、音频等多种模态的信息,构建统一的语义空间&