联邦学习在个性化医疗中的潜力
1. 背景介绍
1.1 问题由来
随着大数据和人工智能技术的发展,个性化医疗逐渐成为医疗领域的重要方向。个性化医疗旨在根据个体遗传信息、生活习惯、过往病史等多维度信息,提供针对性的诊疗方案,提升治疗效果,减少医疗资源浪费。
然而,实现个性化医疗面临诸多挑战:
- 数据隐私:个体健康数据涉及隐私,难以集中存储和处理。
- 数据孤岛:不同医疗机构、不同地域的患者数据难以整合,形成数据孤岛。
- 数据质量:医疗数据来源多样,质量参差不齐,缺乏统一的标准和格式。
- 计算资源:大规模医疗数据处理需要高昂的计算资源,难以在本地部署。
为了应对这些挑战,联邦学习作为一种新型分布式学习范式,近年来在医疗领域引起了广泛关注。
1.2 问题核心关键点
联邦学习是一种分布式机器学习技术,其核心思想是在不共享数据的前提下,通过各节点本地训练模型的参数更新,聚合各节点更新的模型参数,得到全局最优模型。在个性化医疗中