AI 2.0时代的应用场景
1. 背景介绍
随着人工智能(AI)技术的快速发展和应用场景的不断扩展,我们正在进入所谓的AI 2.0时代。这个时代的特征是从传统的基于规则和手写的AI转向基于大规模数据训练的深度学习模型。这些模型通过学习数据中的模式和结构,能够在各种复杂的应用场景中表现出色。
AI 2.0时代的核心在于“数据驱动”,即通过大量的标注数据训练模型,使其能够执行各种任务,如自然语言处理、图像识别、语音识别等。相比于传统的AI 1.0时代,AI 2.0更加注重模型的性能和可解释性,能够在实际应用中产生显著的价值。
2. 核心概念与联系
2.1 核心概念概述
在AI 2.0时代,核心概念主要包括以下几点:
- 深度学习模型:如卷积神经网络(CNN)、循环神经网络(RNN)、变压器(Transformer)等,这些模型通过学习数据中的特征,能够进行各种复杂的模式识别和生成任务。
- 迁移学习:将在大规模数据集上训练的模型,迁移到特定任务上进行调整,以提高模型的泛化能力和性能。
- 超参数调优<