在科技飞速发展的当下,脑机接口(Brain-Computer Interface,BCI)技术逐渐从实验室走向应用领域,其与电商行业的结合成为备受瞩目的焦点。拼多多2025年神经信号购物车API原型的首次曝光,更是将这一话题推向了新的高度。脑机接口数据融合在电商领域的应用,有望为消费者带来全新的购物体验,同时也为电商企业提供了新的发展机遇。
二、脑机接口技术基础
(一)脑机接口的定义与分类
脑机接口技术是大脑和电子设备之间建立通讯和控制的技术。从信息传输方向可分为输出式和输入式两类。输出式脑机接口绕过外周神经或肌肉系统,从大脑信号中提取信息控制外部设备,如意念打字系统;输入式脑机接口则通过刺激大脑皮层等方式实现信息输入,如使用动态电流电极刺激帮助盲人恢复视觉。
(二)脑机接口的实现过程
脑机接口的实现过程包括从大脑中提取脑电信号,对信号进行预处理、特征提取,使用合适的人工智能算法触发控制接口,反馈到外部电子设备,电子设备再根据解析的脑电信号意图进行神经反馈。采集脑电信号的方式有非侵入式、半侵入式和侵入式三种,非侵入式无需手术植入电极,如通过脑电帽采集信号;半侵入式将电极植入颅腔内大脑皮层之外;侵入式则直接植入大脑皮层。
三、数据融合的关键技术
(一)信号处理与分析
脑机接口采集到的大脑信号具有高度复杂性和个体差异性,信号微弱且易受干扰。传统的信号处理方法难以准确提取和解析其中蕴含的信息。而人工智能中的机器学习和深度学习算法能够对大量的脑电数据进行学习和建模,挖掘信号中的潜在模式和规律。例如,深度学习中的卷积神经网络(CNN)能自动提取脑电信号的空间和时间特征,循环神经网络(RNN)及其变体则擅长处理序列性的脑电数据,捕捉大脑活动的动态变化,有效提高脑机接口对大脑信号的解码精度和效率。
(二)跨平台数据融合
在电商场景中,除了脑机接口采集的神经信号数据外,还有来自智能手环的心率变异性(HRV)数据、用户的搜索关键词、浏览轨迹等数据。将这些不同来源、不同格式的数据进行融合是关键。例如,接入智能手环的HRV数据可以完善压力反应评估模型,通过搜索关键词矩阵和浏览轨迹分析可以构建商品关联词库和识别潜在消费升级路径。建立统一商品标识库,通过item_id(淘宝)、sku_id(京东)、goods_id(拼多多)建立映射关系,有助于实现跨平台数据的对齐和整合。
(三)隐私计算应用
在数据融合过程中,用户隐私保护至关重要。采用联邦学习技术,可以在保护用户隐私的前提下进行跨平台数据协作。例如,拼多多可以通过pdd.open.auth.token接口进行数据协作,在不泄露用户原始数据的情况下,利用其他平台的数据提升自身的推荐算法和购物体验。
四、拼多多的实践探索
(一)神经信号购物车API原型功能
拼多多的神经信号购物车API原型具有多种功能。通过脑机接口采集用户的神经信号,分析用户的购物意图和偏好。例如,当用户看到感兴趣的商品时,脑电信号会发生变化,API可以捕捉这些信号并分析出用户对商品的喜好程度。同时,该API可以与拼多多的购物车系统进行交互,实现商品的自动添加或移除。此外,还可以根据用户的神经信号提供个性化的商品推荐,提高用户的购物效率和满意度。
(二)与其他技术的结合
拼多多将神经信号购物车API与现有的电商技术相结合,如社交裂变数据、评价体系语义分析等。通过拼团裂变系数接口记录分享次数与成团率,计算每个团的裂变传播深度,结合神经信号分析用户对拼团活动的参与意愿。利用评价体系语义分析技术提取评价数据中的情感倾向与高频痛点词,与神经信号数据相互印证,进一步优化商品推荐和购物车管理。
(三)实际应用场景
在实际应用中,神经信号购物车API可以为用户带来便捷的购物体验。例如,当用户在浏览商品时,无需手动操作,只需通过大脑的神经信号即可将感兴趣的商品添加到购物车。在直播购物场景中,主播可以通过分析观众的神经信号了解他们的兴趣点,及时调整推荐商品,提高直播的转化率。此外,该API还可以应用于虚拟试衣间等场景,根据用户的神经信号判断他们对不同款式服装的喜好,实现更精准的试衣推荐。