摘要
检索增强生成(Retrieval Augmented Generation, RAG)作为一种将外部知识库与大型语言模型(LLM)相结合的技术,旨在提升LLM在处理知识密集型任务时的准确性、时效性和可解释性。本报告将详细阐述RAG技术的发展演进,从早期的朴素RAG到当前的先进RAG和模块化RAG,分析其关键技术组成、面临的挑战,并展望其未来发展趋势。
1. 引言
大型语言模型(LLMs)在自然语言理解和生成方面取得了显著进展,但其本身存在一些固有限制,例如:知识截止(训练数据之外的知识无法获取)、幻觉(生成不准确或虚构的信息)以及缺乏透明度(难以追溯信息来源)。检索增强生成(RAG)技术的出现,为解决这些问题提供了有效的途径。RAG通过在LLM生成回复之前,从外部知识源(如文档库、数据库、API等)检索相关信息,并将这些信息作为上下文提供给LLM,从而显著提升了LLM的性能。
2. RAG技术的发展演进
RAG技术的发展大致可以分为以下几个阶段:
2.1 朴素RAG (Naive RAG)
这是RAG技术的最早和最基础的形态,通常包含以下核心步骤:
- 索引 (Indexing): 将外部知识源(如文档集合)分割成块(Chunks),通过编码器(Encoder)将其转换为向量嵌入(Vector Embeddings),并存储在向量数据库中以便快速检索。
- 检索 (Retrieval): 当用户提出查询时,将查询同样编码为向量嵌入,然后在向量数据库中搜索与查询向量最相似的文本块。
- 生成 (Generation): 将检索到的文本块与原始查询一起作为上下文信息,输入到大型语言模型中,由LLM生成最终的回复。
朴素RAG的优势在于实现简单,能够快速将外部知识引入LLM。但其也存在一些问题,如检索质量不高、上下文窗口限制、生成内容与检索信息融合不佳等。
2.2 先进RAG (Advanced RAG)
为了克服朴素RAG的局限性,研究者们提出了多种改进策略,形成了先进RAG。这些策略主要集中在优化检索和生成过程:
- 预处理与索引优化:
- 滑动窗口 (Sliding Window): 在文本分块时,允许块之间有重叠,以保留块边界处的语义完整性。
- 元数据与图索引 (Metadata and Graph Indexing): 除了文本内容,还索引文档的元数据(如创建日期、来源、章节等)或构建知识图谱,以支持更复杂的查询和更精确的检索。
- 检索策略优化:
- 查询转换 (Query Transformation): 对用户查询进行重写、扩展或分解,以提高检索相关性。例如,使用LLM将复杂问题分解为子问题,或将模糊查询具体化。
- 混合搜索 (Hybrid Search): 结合基于向量的语义搜索和传统的基于关键词的稀疏检索(如BM25),以兼顾语义相似性和关键词匹配。
- 递归检索 (Recursive Retrieval) / 迭代检索 (Iterative Retrieval):