考研数学备考基础阶段关键是什么?

基础阶段关键的不是做什么题,关键的是做题

不管你是做1800题还是做660题,任选一个都不会错,只要你静下心去做就行,不要朝三暮四,听别人说1800题好,就去做1800题,听别人说660题好,就去做660题。

我知道的有人考研只做1800题,其他什么题都没做,只把1800题刷了三遍,最后考了140多分。我也见过有人不仅做了1800题,做了660,做了各种各样的习题,结果最后连100分都没考到,属于差生文具多

基础阶段做什么题,怎么做

我建议基础阶段选择1800题

建议大家做1800题的原因是,他的题目是分章节的,一章一章做,按知识点分类好了,比较适合大家边看视频课,边做题。

拿到1800题不要上来就做,盲目的做题只会让自己越复习越乱。

我的建议是,先看视频课,然后看完一章的视频课,再做一章的题目,一章的题目都做完之后,再统一对答案,不要做一道题看一道题的答案,这样的习惯很不好。

如果你觉得1800题做起来费劲,那你可以试试「考研数学欧几里得」,这是我在考研的时候的数学救星,真宝藏刷题小程序,yyds!

因为我在考研刚开始复习的时候,做1800题总是会犯很多错误,做题速度慢,没有思路,可以我听完老师的课程明明也可以听懂,结果自己去做就不会了。

然后我就试了朋友推荐的考研数学欧几里得,我试完之后,感觉立马重燃刷题信心!想真正吃透一本题集,欧几里得绝对必不可少!能够主动帮我分析出来我到底是哪里没有掌握,精确的找到我的薄弱点,并且帮我规划一条最适合我的,独一物二的刷题路径,帮我循序渐进的吃透薄弱点!

我不是做题没有思路吗,欧几里得会把粗粒度的知识点打碎,然后组合出题,训练我从A-B的思考过程,形成肌肉记忆,每一道题都有不跳步解析,涉及到的知识点也有举一反三的功能,让知识更连贯,养成属于自己的数学思维,还能把那种复杂的大题的阶梯过程分解为一个个小的题目让我训练,然后不断的加大题目复杂度,最后我可以做很综合的题目。

以上这些,都很实用,我最最最喜欢欧几里得的一点,其实是他帮助我找到了学好考研数学的信心,给我提供了极大的情绪价值,就算我做错题,他也会鼓励我,帮我分析错在哪里,该怎么样避免下一次再犯错,并且给我提供了一条明确的刷题路径。这种正反馈让我刷题上瘾。而我刷1800题和660题的时候,看着满篇的错题,真的头大,挫败感很强烈

所以,如果你现在觉得刷题很难,没有思路,做过的题目反复出错,那真的可以试试考研数学欧几里得:


欧几里得官网 | 结构力学网 | 材料力学网 | 考研 | 李其林老师 | 李其林结构力学


考研数学的做题其实并不难,关键是形成一套自己的正反馈系统,遇到错题,解决错题,一定一定不要积累错题,要不然雪球越滚越大,导致最后心有余而力不足。

<think>好的,我现在需要帮用户解答考研数学专业如何从现在开始备考的问题。首先,我得确定用户的具体情况,可能是一个准备考数学专业的学生,现在开始准备,可能是大三或者大四。不过用户没有说明具体背景,所以我要保持通用性。 接下来,我得考虑考研数学专业的考试内容。通常包括数学分析、高等代数,可能还有实变函数、复变函数、概率论等专业课,不同学校可能不同。需要建议用户先确定目标院校的参考书目和考试大纲。 然后,时间规划是关键。从现在开始到考研大约有6个月左右的时间,分阶段安排基础、强化、冲刺。基础阶段需要系统过教材,强化阶段做真题和专题,冲刺阶段模拟考试和查漏补缺。 复习重点方面,数学分析和高等代数是核心,必须扎实。数分中的极限、微分、积分、级数,高代中的线性空间、线性变换、矩阵理论都是重点。用户可能需要具体的学习方法,比如定理证明、例题练习、错题本等。 参考书推荐也很重要,比如华东师大的《数学分析》、北大《高等代数》,还有裴礼文、钱吉林的习题集。用户可能需要这些资源来提高解题能力。 另外,用户可能关心是否要报班或者找研友,这部分可以提到学习小组的重要性,互相督促和讨论。同时,心理调节和健康管理也是备考中容易忽视的部分,需要提醒用户注意休息和锻炼。 可能用户没有提到的深层需求是时间管理的方法,如何平衡学校课程和备考,或者如何处理焦虑情绪。这些问题虽然没明说,但作为备考建议,可以适当涵盖,提供更全面的指导。 最后,确保回答结构清晰,分阶段、分科目,给出具体建议和资源推荐,帮助用户系统化备考。同时,语言要简洁易懂,避免过于学术化,让用户容易理解和执行。</think>以下是针对考研数学专业(科目代码多为**数学分析+高等代数**)的系统备考方案,时间跨度从当前到12月考试,分阶段执行: --- ### **一、阶段划分与核心任务(总时长约24周)** ```mermaid gantt title 考研数学备考时间轴 dateFormat YYYY-MM-DD section 基础夯实 教材精读 :active, 2023-07-01, 8w 定理推导整理 :2023-07-01, 4w section 强化突破 真题分类训练 :2023-09-01, 6w 专题模块突破 :2023-09-15, 4w section 冲刺模拟 全真模拟考试 :2023-11-01, 4w 错题溯源复习 :2023-11-20, 3w ``` --- ### **二、核心科目备考策略** #### **(1) 数学分析** **重点模块**: - **极限理论**:掌握$\epsilon-\delta$语言证明(如$\lim_{x \to 0} \frac{\sin x}{x}=1$的严格推导) - **微分学**:Rolle定理→Lagrange中值定理→Taylor展开的逻辑链 - **积分学**:含参变量积分、重积分换元(Jacobi行列式应用) - **级数**:一致收敛性判定(Weierstrass判别法、Abel-Dirichlet检验) **典型题型训练**: - 计算题:曲线积分$\int_L Pdx+Qdy$化为定积分 - 证明题:用闭区间套定理证明有界数列存在收敛子列 --- #### **(2) 高等代数** **核心突破点**: - **线性空间**:基变换与坐标变换(过渡矩阵求法) - **线性变换**:Jordan标准型存在性证明思路 - **矩阵理论**:Smith标准形在多项式矩阵中的应用 - **二次型**:惯性定理与正定判定(顺序主子式全>0) **易错点警示**: - 混淆相似矩阵与合同矩阵的关系 - 特征值重根时的广义特征向量求解 --- ### **三、参考书梯度使用** | 难度 | 数学分析推荐用书 | 高等代数推荐用书 | |------|------------------|------------------| | 基础 | 华东师大版(配课后习题精解) | 北大第四版(重点做补充题) | | 进阶 | 裴礼文《数学分析中的典型问题与方法》 | 丘维声《高等代数学习指导书》 | | 冲刺 | 谢惠民《数学分析习题课讲义》 | 蓝以中《高等代数解题指南》 | --- ### **四、周计划模板示例** **第1-8周(基础阶段)**: - 每天4小时:精读教材+完成课后重点题(如《数学分析》第14章第5题) - 每周六:整理当周定理证明框图(例如用$$\begin{CD} \text{闭区间套定理} @>>> \text{有限覆盖定理} \\ @VVV @AAA \\ \text{确界原理} @<<< \text{单调有界定理} \end{CD}$$表示实数基本定理关联) - 每周日:参加线上讨论班(重点讨论如「隐函数定理的几何意义」) --- ### **五、关键注意事项** 1. **证明题训练**:每日至少手写1道完整证明(如“证明$\sqrt{2}$是无理数”) 2. **公式记忆技巧**:建立形如$$\oint_C Pdx+Qdy = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)dxdy$$的格林公式记忆卡片 3. **模拟考节奏**:从10月起,每周日上午严格按考试时间做套卷 --- 是否需要提供: → 具体院校真题对比分析(如北大vs中科大命题风格) → 常考抽象代数/概率论拓展模块的备考建议 → 复试专业课笔试准备方案?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值