spark超市销售数据分析-计算机毕业设计源码19946

摘要

本论文旨在研究Spark技术和ECharts可视化技术在超市销售数据分析系统中的应用。本系统通过对超市销售数据进行分析和可视化展示,帮助决策层更好地了解销售情况和趋势,进而做出更有针对性的决策。本系统主要包括数据处理、数据可视化和系统测试三个模块。其中,数据处理模块主要负责对销售数据进行清洗、整理和分析;数据可视化模块主要利用ECharts可视化技术,将销售数据以多种图表类型进行展示;系统测试模块主要对系统进行全面、深入、系统化的测试,以提高系统的质量和可靠性。本系统的研究对超市销售数据分析系统的开发和应用具有一定的参考价值,可以为相关领域的研究和实践提供借鉴和启示。

spark框架作为一种成熟的Python开发框架,具有良好的可扩展性和灵活性,可以满足系统开发的需求。Python编程语言作为一种广泛应用于企业级开发的编程语言,具备强大的处理能力和稳定性。MySQL数据库作为一种常用的关系型数据库,能够高效地存储和管理系统数据。

关键词:超市销售数据分析;Python语言;spark框架;Mysql数据

Abstract

This paper aims to study the application of Spark technology and ECharts visualization technology in supermarket sales data analysis systems. This system analyzes and visualizes supermarket sales data to help decision-makers better understand sales situations and trends, and make more targeted decisions. This system mainly includes three modules: data processing, data visualization, and system testing. Among them, the data processing module is mainly responsible for cleaning, organizing, and analyzing sales data; The data visualization module mainly utilizes ECharts visualization technology to display sales data in various chart types; The system testing module mainly conducts comprehensive, in-depth, and systematic testing on the system to improve its quality and reliability. The research of this system has certain reference value for the development and application of supermarket sales data analysis system, and can provide reference and inspiration for research and practice in related fields.

The Spark framework, as a mature Python development framework, has good scalability and flexibility, which can meet the needs of system development. Python programming language, as a widely used programming language in enterprise development, has strong processing power and stability. MySQL database, as a commonly used relational database, can efficiently store and manage system data.

Keywords: supermarket sales data analysis; Python language; Spark framework; MySQL data

目录

摘要

Abstract

第1章 引 言

1.1选题背景

1.2研究意义

1.3论文结构安排

1.4相关技术介绍

1.4.1 Python简介

1.4.2 MySQL数据库

1.4.3  B/S架构

1.4.4 spark框架介绍

spark介绍

第2章 系统需求分析

2.1系统可行性分析

2.1.1 技术可行性分析

2.1.2 经济可行性分析

2.1.3 操作可行性分析

2.1.4 法律可行性分析

2.2系统需求分析

2.1.5 功能需求分析

2.1.6 非功能性需求分析

2.2系统用例分析

第3章 系统设计

3.系统功能模块设计

3.1数据库设计

3.1.1 数据库概念结构设计

3.1.2 数据库逻辑结构设计

4章 关键模块的设计与实现

4.1登录模块

4.2销售数据管理模块

4.3大类类型管理模块

4.4中类类型管理模块

4.5小类类型管理模块

4.6销售数量管理模块

4.7销售金额管理模块

第5章 系统测试

5.1 系统测试的目的

5.2 系统测试方法

5.3 功能测试

第6章 总 结

参考文献

 

第1章 引 言

1.1选题背景

随着全球化和信息化进程的加速。超市行业作为零售业的重要组成部分,面临着前所未有的挑战和机遇。传统的超市运营模式已经不能满足现代消费者的需求,超市必须更加精准地把握市场动态。预测消费者行为,以实现更高效的销售和服务。在这样的背景下,超市销售数据分析系统应运而生,成为超市行业创新和发展的重要支撑。

超市销售数据分析系统是基于大数据技术,对超市销售数据进行收集、整理、分析和挖掘的一种智能化工具。它可以帮助超市实现对销售数据的实时监控。发现隐藏在数据背后的规律和趋势,为超市的决策提供数据支持。同时,随着物联网、云计算等技术的发展,超市销售数据分析系统正逐步向智能化、自动化方向发展,进一步提高了超市的运营效率和服务质量。

然而,目前超市销售数据分析系统的发展还面临着—些挑战。比如。数据质量和准确性问题、数据安全和隐私保护问题、以及数据分析和挖掘算法的优化问题等。这些问题限制了超市销售数据分析系统的应用和发展,也为本研究提供了广阔的空间和可能。

1.2研究意义

超市销售数据分析系统的研究具有重大的理论和实践意义。

从理论层面来看,本研究可以丰富和完善销售数据分析的理论体系和方法论。通过对超市销售数据的深入挖掘和分析,可以揭示出消费者行为,市场需求产品竞争等方面的规律,为销售理论的创新提供实证支持。同时,本研究还可以探索新的数据分析和挖掘算法。提高数据分析的准确性和效率,为数据科学的发展做出贡献。

从实践层面来看,超市销售数据分析系统的研究可以帮助超市提高运营效率和服务质量。通过对销售数据的实时监控和分析,超市可以更加住确地把握市场动态和消费者需求,优化库存管理和商品陈列。提高销售额和客户满意度。同时,本研究还可以为超市的决策提供数据支持,帮助超市制定更加科学和合理的经营策略,提高市场竞争力。

此外,超市销售数据分析系统的研究还具有重要的社会价值。它可以促进零售业的数亨化转型和智能化升级,推动整个行业的创新和发展。同时,通过对消费者行为和市场需求的深入研究,可以为政府和企业提供更加住确和全面的市场信息,有助于优化资源配置和提高经济效益。综上所述。超市销售数据分析系统的研究不仅具有重要的理论价值和实践意义,还具有深远的社会影响和发展前景。通过本研究,可以为超市行业的数字化转型和智能化升级提供有力支持,推动整个行业的创新和发展。

1.3论文结构安排

论文将分层次进行编排,除去论文摘要致谢文献参考部分,正文部分还会对系统需求做出分析,以及阐述大体的设计和实现的功能,最后罗列部分调测记录,论文主要架构如下:

第1章 交代项目的背景、开发这个系统的意义以及论文的章节安排情况。

第2章 对系统的具体需求展开分析。

第3章 阐述了系统的设计,其中涵盖了功能设计以及数据库的设计。

第4章 阐明了超市销售数据分析各个功能模块的实现,以图文的形式进行展示。

第5章 罗列了部分系统调试与测试的记录。

第6章 介绍了超市销售数据分析的结论。

1.4相关技术介绍

1.4.1 Python简介

Python 是一个高层次的脚本语言结合了解释性、编译性、互动性和面向对象的。Python 的设计,相比其他语言经常使用英文关键字和其他语言的一些标点符号,它具有比其他语言更有特色语法结构,具有很强的可读性。

解释型语言:类似于Python和Perl语言,这意味着开发过程中没有了编译这个环节。交互式语言:可以在一个 Python 提示符 >>> 后直接执行代码。面向对象语言:Python支持面向对象的风格或代码封装在对象的编程技术。

1.4.2 MySQL数据库

MySQL经过多次的更新,功能层面已经非常的丰富和完善了,从MySQL4版本到5版本进行了比较大的更新,在商业的实际使用中取得了很好的实际应用效果。最新版本的MySQL支持对信息的压缩,同时还能进行加密能更好的满足对信息安全性的需求。同时经过系统的多次更新,数据库自身的镜像功能也得到了很大的增强,运行的流畅度和易用性方面有了不小的进步,驱动的使用和创建也更加的高效快捷。最大的变动还是进行了空间信息的显示优化,能更加方便的在应用地图上进行坐标的标注和运算。强大的备份功能也保证了用户使用的过程会更加安心,同时支持的Office特性还支持用户的自行安装和使用。在信息的显示形式上也进行了不小的更新,增加了两个非常使用的显示区,一个是信息区,对表格和文字进行了分类处理,界面的显示更加清爽和具体。第二是仪表的信息控件,能在仪表信息区进行信息的显示,同时还能进行多个信息的比对,为用户的实际使用带来了很大的便捷。

针对本文中设计的超市销售数据分析系统在实际的实现过程中,最终选择MySQL数据库的主要原因在于在企业的应用系统应用及开发的过程中会存在大量的数据库比较频繁的操作,而且数据的安全性要求也是非常的高。综合这些因素,最终选择安全性系数比较高的MySQL来对超市销售数据分析系统后台数据进行存储操作。

1.4.3  B/S架构 

B/S结构的特点也非常多,例如在很多浏览器中都可以做出信号请求。并且可以适当的减轻用户的工作量,通过对客户端安装或者是配置少量的运行软件就能够逐步减少用户的工作量,这些功能的操作主要是由服务器来进行控制的,由于该软件的技术不断成熟,最主要的特点就是与浏览器相互配合为软件开发带来了极大的便利,不仅能够减少开发成本,还能够不断加强系统的软件功能,层层相互独立和展现层是该B/S结构完成相互连接的主要特性。

1.4.4 spark框架介绍

spark介绍

keley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。通过名为 Mesos 的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。

第2章 系统需求分析

  • 1 章
  • 2 章

2.1系统可行性分析

      1. 技术可行性分析

采用Python编程语言和spark框架,以及MySQL关系型数据库管理系统,设计和实现一个超市销售数据分析。Python作为一种简单易学、功能强大且广泛应用的编程语言,具有良好的可读性和可维护性,适合用于开发企业级应用。而spark作为一个高效、灵活的Web框架,提供了快速开发和可扩展的能力,使系统搭建更加高效和便捷。MySQL作为一种常见的关系型数据库管理系统,具有稳定性和可靠性,能够满足系统对数据的存储和访问需求。

      1. 经济可行性分析

在开发超市销售数据分析中所使用的pycharm开发工具、Vs Code、HbuildX、MySQL数据库等工具都是开源免费的,这些环境在学校都进行了系统的学习,自己能够独立操作完成,不需要额外花费,而且系统的开发工具从网上都可以直接下载,因此在经济方面是可行的。

      1. 操作可行性分析

此次项目设计的时候我参考了很多类似系统的成功案例,对它们的操作界面以及功能都进行了系统的分析,将众多案例结合在一起,突出以人为本简化操作,所以具有基本计算机知识的人都会操作本项目。因此操作可行性也没有问题。

      1. 法律可行性分析

法律方面主要考虑的是系统的开发是否违法,开发的超市销售数据分析严格按照《中华人民共和国计算机软件保护条例》、《中华人民共和国著作权法》等法律法规,系统的开发可以为企业带来效益,不存在违法行为,因此在法律上是可行的。

2.2系统需求分析

      1. 功能需求分析

超市销售数据分析提供了丰富的功能,主要包括用户管理、销售数据管理、大类类型管理、中类类型管理、小类类型管理、销售数量管理、销售金额管理功能。具体功能分析如下:

  1. 用户管理:后台管理员可以进行用户账户的创建、修改、删除,以及管理其权限和角色,确保系统安全和合规性。
  2. 销售数据管理:管理员可以管理超市的销售数据,包括导入、导出数据,监控销售数据的完整性和准确性,确保数据质量和可追溯性。
  3. 大类类型管理:管理员可以管理商品销售数据的大类类型,包括添加、编辑、删除大类类型,调整分类结构和属性,确保数据分类的合理性和统一性。
  4. 中类类型管理:管理员可以管理商品销售数据的中类类型,包括添加、编辑、删除中类类型,进行分类属性设定和关联管理,以维护销售数据的分类结构。
  5. 小类类型管理:管理员可以管理商品销售数据的小类类型,包括添加、编辑、删除小类类型,设置销售属性和关联信息,确保销售数据的细致分类和管理。
  6. 销售数量管理:管理员可以监控和管理商品的销售数量,包括销售月份、销售数量等,确保销售数量的准确记录和分析。
  7. 销售金额管理:管理员可以管理商品的销售金额数据,包括销售额统计、销售月份等,确保销售金额数据的完整性和可视化分析。
      1. 非功能性需求分析

超市销售数据分析的非功能性需求比如超市销售数据分析的安全性怎么样,可靠性怎么样,性能怎么样,可扩展性怎么样等。具体可以表示在如下3-1表格中:

2.1 超市销售数据分析非功能需求表

安全性

主要指超市销售数据分析数据库的安装,数据库的使用和密码的设定必须合乎规范。

可靠性

可靠性是指超市销售数据分析能够按照用户的指示进行操作,经过测试,可靠性90%以上。

性能

性能是影响超市销售数据分析占据市场的必要条件,所以性能最好要佳才好。

可扩展性

比如数据库预留多个属性,比如接口的使用等确保了系统的非功能性需求。

易用性

用户只要跟着超市销售数据分析的页面展示内容进行操作,就可以了。

可维护性

超市销售数据分析开发的可维护性是非常重要的,经过测试,可维护性没有问题

2.2系统用例分析

超市销售数据分析中管理员角色用例图如图2.1所示:

图2.1管理员角色用例图

  1. 系统设计
  • 2 章

3.系统功能模块设计

系统功能模块只有管理员模块,登录进去对应相应的功能,具体的功能模块图如图3.1所示。

图3.1 超市销售数据分析功能模块图

3.1数据库设计

数据库的设计承载着系统的各种数据,在建立数据库的时候,主要是数据库模型的设计以及各个数据库表的设计两部分。

      1. 数据库概念结构设计

下面是整个超市销售数据分析中主要的数据库表以及总E-R实体关系图。

图3.2 超市销售数据分析总E-R关系图

      1. 数据库逻辑结构设计

通过前面E-R关系图可以看到项目需要创建很多个数据表。以下是项目中的主要数据库表的关系模型:

表access_token (登陆访问时长)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

token_id

int

10

0

N

Y

临时访问牌ID

2

token

varchar

64

0

Y

N

临时访问牌

3

info

text

65535

0

Y

N

4

maxage

int

10

0

N

N

2

最大寿命:默认2小时

5

create_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

创建时间:

6

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间:

7

user_id

int

10

0

N

N

0

用户编号:

表auth (用户权限管理)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

auth_id

int

10

0

N

Y

授权ID:

2

user_group

varchar

64

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值