\
需要私我,非无偿
基于STM32F103+MCU设计的智慧病房监测系统
摘要
随着医疗技术的不断进步和物联网技术的快速发展,智慧病房监测系统逐渐成为提升医疗服务质量和效率的重要手段。本文设计了一种基于STM32F103C8T6单片机、MAX30102心率传感器模块、LMT70温度传感器、DHT11温湿度传感器模块、烟雾传感器、光敏电阻传感器模块以及阿里云物联网平台的智慧病房监测系统。该系统能够实时监测病房内的环境参数(温度、湿度、烟雾浓度、光照强度)和病人的生理参数(心率、体温),并通过MQTT协议与阿里云物联网平台进行数据交互,实现手机端APP的远程监控和数据内容显示。当监测数据超过预设阈值时,系统会产生报警提示,以便医护人员及时采取相应措施。
关键词
STM32F103C8T6;智慧病房监测系统;传感器;阿里云物联网平台;远程监控
一、引言
(一)研究背景与意义
病房是医院的重要组成部分,病人的康复和治疗效果与病房环境密切相关。传统的病房监测方式主要依赖医护人员的定期巡视和手动记录,存在监测不及时、数据不准确等问题。随着物联网技术的发展,智慧病房监测系统应运而生,它能够实现病房环境的实时监测和远程监控,提高医疗服务的质量和效率。
本研究旨在设计一种基于STM32F103C8T6单片机的智慧病房监测系统,通过集成多种传感器模块,实现对病房环境和病人生理参数的全面监测,并通过阿里云物联网平台实现数据的远程传输和监控。该系统能够及时发现病房内的异常情况,为医护人员提供准确的数据支持,提高医疗服务的智能化水平。
(二)国内外研究现状
目前,国内外在智慧病房监测系统方面已经取得了一定的研究成果。国外一些发达国家已经率先将物联网技术应用于医疗领域,实现了病房环境的智能化监测和管理。国内也在积极探索智慧病房监测系统的研发和应用,通过集成多种传感器和通信技术,实现了对病房环境和病人生理参数的实时监测和远程监控。
然而,现有的智慧病房监测系统仍存在一些不足之处,如传感器精度不高、数据传输不稳定、系统集成度不高等。因此,本研究旨在设计一种高精度、高稳定性的智慧病房监测系统,以满足医疗服务的实际需求。
二、系统总体设计
(一)系统功能需求
- 环境监测:通过DHT11温湿度传感器模块、烟雾传感器、光敏电阻传感器模块实时监测病房内的温度、湿度、烟雾浓度和光照强度。当监测数据超过预设阈值时,系统产生报警提示。
- 生理监测:通过MAX30102心率传感器模块、LMT70温度传感器实时监测病人的心率和体温。当监测数据超过预设阈值时,系统产生报警提醒。
- 数据交互:单片机通过MQTT协议与阿里云物联网平台进行数据交互,实现数据的远程传输和存储。
- 远程监控:手机端APP能够实时查看病房内的环境参数和病人的生理参数,实现远程监控和数据内容显示。
(二)系统硬件架构
本系统的硬件架构主要由STM32F103C8T6单片机、传感器模块、通信模块和电源模块组成。
-
STM32F103C8T6单片机:作为系统的核心控制器,负责数据采集、处理、存储和通信等功能。
-
传感器模块:
- DHT11温湿度传感器模块:用于实时监测病房内的温度和湿度。
- 烟雾传感器:用于检测病房内的烟雾浓度。
- 光敏电阻传感器模块:用于监测病房内的光照强度。
- MAX30102心率传感器模块:用于实时监测病人的心率。
- LMT70温度传感器:用于监测病人的体温。
-
通信模块:采用ESP8266 Wi-Fi模块,实现单片机与阿里云物联网平台之间的无线通信。
-
电源模块:为系统提供稳定的工作电压和电流。
(三)系统软件架构
本系统的软件架构主要包括单片机程序、阿里云物联网平台配置和手机端APP开发三部分。
- 单片机程序:负责初始化传感器模块、采集数据、处理数据、与阿里云物联网平台进行通信等功能。
- 阿里云物联网平台配置:包括创建产品、设备、定义物模型、设置规则引擎等步骤,实现数据的远程传输和存储。
- 手机端APP开发:基于阿里云物联网平台提供的SDK开发手机端APP,实现数据的实时查看、远程监控和报警提示等功能。
三、系统硬件设计
(一)STM32F103C8T6单片机
STM32F103C8T6是一款基于ARM Cortex-M3内核的32位微控制器,具有丰富的外设资源和强大的处理能力。在本系统中,它主要负责数据采集、处理、存储和通信等功能。
- 时钟系统配置:通过配置PLL(锁相环)和预分频器,为系统提供稳定的工作时钟。
- GPIO口配置:根据传感器模块和通信模块的需求,配置相应的GPIO口为输入或输出模式。
- ADC配置:配置ADC(模数转换器)用于采集LMT70温度传感器的模拟信号。
- USART配置:配置USART(通用同步/异步收发传输器)用于与ESP8266 Wi-Fi模块进行通信。
- 定时器配置:配置定时器用于产生PWM(脉宽调制)信号,控制某些传感器的工作状态(如光敏电阻传感器)。
(二)传感器模块
1. DHT11温湿度传感器模块
DHT11是一款数字温湿度传感器,具有响应快、抗干扰能力强、性价比高等优点。它采用单总线通信方式,与STM32F103C8T6单片机连接时,只需占用一个GPIO口。
- 工作原理:DHT11通过内部的电阻式感湿元件和NTC测温元件分别测量湿度和温度,并将测量结果转换为数字信号输出。
- 电路连接:将DHT11的VCC引脚连接到单片机的3.3V电源,GND引脚接地,DATA引脚连接到单片机的GPIO口。
- 数据采集:单片机通过发送开始信号启动DHT11的测量,然后等待DHT11返回测量数据。数据格式为40位,包括湿度高8位、湿度低8位、温度高8位、温度低8位和校验位。
2. 烟雾传感器
烟雾传感器用于检测病房内的烟雾浓度,当烟雾浓度超过预设阈值时,系统产生报警提示。
- 工作原理:烟雾传感器内部采用气敏电阻,当烟雾进入传感器时,气敏电阻的阻值会发生变化,从而引起输出电压的变化。
- 电路连接:将烟雾传感器的VCC引脚连接到单片机的5V电源(或3.3V电源,具体根据传感器型号而定),GND引脚接地,OUT引脚连接到单片机的ADC引脚(或GPIO口,通过ADC采集模拟信号)。
- 数据采集:单片机通过ADC采集烟雾传感器的输出电压,并将其转换为烟雾浓度值。
3. 光敏电阻传感器模块
光敏电阻传感器模块用于监测病房内的光照强度,当光照强度超过或低于预设阈值时,系统产生报警提示。
- 工作原理:光敏电阻是一种基于内光电效应的半导体元件,其阻值随入射光强的变化而变化。当入射光强增加时,光敏电阻的阻值减小;反之,入射光减弱时,光敏电阻的阻值增大。
- 电路连接:将光敏电阻传感器模块的VCC引脚连接到单片机的3.3V电源,GND引脚接地,OUT引脚连接到单片机的ADC引脚。
- 数据采集:单片机通过ADC采集光敏电阻传感器模块的输出电压,并将其转换为光照强度值。
4. MAX30102心率传感器模块
MAX30102是一款集成了红外光源、光电检测器和信号处理电路的高度集成心率传感器,主要用于心率和血氧饱和度的测量。
- 工作原理:MAX30102传感器的工作原理基于红外光在血液中的吸收特性。红外光能够穿透皮肤并被血液吸收,血液中的氧合血和脱氧血对红外光的吸收程度不同,因此可以通过测量红外光的吸收情况来推断血液的氧合状态。传感器利用LED发出的光照射到皮肤表面,然后通过光电检测器接收经过皮肤反射的光信号,并根据光信号的变化来计算心率。
- 电路连接:将MAX30102模块的VCC引脚连接到单片机的3.3V电源,GND引脚接地,SDA和SCL引脚分别连接到单片机的I2C总线的SDA和SCL引脚。
- 数据采集:单片机通过I2C总线与MAX30102模块进行通信,读取心率数据。
5. LMT70温度传感器
LMT70是一款高精度、低功耗的CMOS模拟温度传感器,适用于高精度、低功耗的经济高效型温度感测应用。
- 工作原理:LMT70通过内部的温度敏感元件将温度转换为电压输出。
- 电路连接:将LMT70的VCC引脚连接到单片机的3.3V电源,GND引脚接地,OUT引脚连接到单片机的ADC引脚。
- 数据采集:单片机通过ADC采集LMT70的输出电压,并将其转换为温度值。
(三)通信模块
本系统采用ESP8266 Wi-Fi模块实现单片机与阿里云物联网平台之间的无线通信。
- ESP8266 Wi-Fi模块介绍:ESP8266是一款低功耗、高性能的Wi-Fi模块,支持AT指令集和SDK开发。它可以通过UART接口与单片机进行通信,实现数据的无线传输。
- 电路连接:将ESP8266模块的VCC引脚连接到单片机的3.3V电源,GND引脚接地,TXD引脚连接到单片机的RXD引脚,RXD引脚连接到单片机的TXD引脚。
- 通信协议:本系统采用MQTT协议进行数据传输。MQTT是一种轻量级的消息传输协议,适用于物联网领域。它基于发布/订阅模式,可以实现设备之间的低延迟、低功耗通信。
(四)电源模块
电源模块为系统提供稳定的工作电压和电流。根据系统的需求,可以选择使用电池供电或外部电源供电。
- 电池供电:在电池供电的情况下,需要设计电池管理电路,如电池充电电路、电池保护电路等。同时,还需要考虑电池的容量和续航时间等因素。
- 外部电源供电:在外部电源供电的情况下,需要设计电源转换电路,将外部电源电压转换为系统所需的工作电压(如3.3V或5V)。同时,还需要考虑电源的稳定性和可靠性等因素。
四、系统软件设计
(一)单片机程序设计
单片机程序主要负责初始化传感器模块、采集数据、处理数据、与阿里云物联网平台进行通信等功能。其流程如下:
- 系统初始化:包括时钟系统初始化、GPIO口初始化、ADC初始化、USART初始化、定时器初始化等。同时,还需要初始化传感器模块和通信模块。
- 数据采集:通过传感器模块实时采集病房内的环境参数和病人的生理参数。对于数字传感器(如DHT11、MAX30102),直接读取其输出数据;对于模拟传感器(如烟雾传感器、光敏电阻传感器模块、LMT70),通过ADC采集其输出电压,并将其转换为相应的物理量。
- 数据处理:对采集到的数据进行滤波、校准等处理,以提高数据的准确性。同时,还需要判断数据是否超过预设阈值,如果超过则产生报警提示。
- 数据通信:将处理后的数据通过MQTT协议发送给阿里云物联网平台。在发送数据之前,需要先建立与阿里云物联网平台的连接,并订阅相应的主题。
- 报警处理:当监测数据超过预设阈值时,控制蜂鸣器发出报警声,并通过MQTT协议将报警信息发送给阿里云物联网平台。
(二)阿里云物联网平台配置
阿里云物联网平台提供了丰富的功能和服务,可以实现设备的远程监控、数据管理和分析等功能。在本系统中,需要进行以下配置:
- 创建产品:在阿里云物联网平台上创建一个新的产品,并定义产品的基本信息(如产品名称、产品描述等)。
- 创建设备:在产品下创建设备,并定义设备的基本信息(如设备名称、设备描述等)。同时,还需要为设备分配一个唯一的DeviceKey和DeviceSecret,用于设备的认证和通信。
- 定义物模型:根据系统的功能需求,定义物模型(如温度、湿度、烟雾浓度、光照强度、心率、体温等属性)。物模型描述了设备的功能和数据结构,是设备与云端进行通信的基础。
- 设置规则引擎:规则引擎用于处理设备上报的数据,并触发相应的动作(如数据存储、报警通知等)。在本系统中,需要设置规则引擎,当设备上报的数据超过预设阈值时,触发报警通知,并将数据存储到云端数据库中。
(三)手机端APP开发
手机端APP主要用于实时查看病房内的环境参数和病人的生理参数,实现远程监控和数据内容显示。其开发流程如下:
-
环境搭建:选择合适的开发工具和开发环境(如Android Studio、Xcode等),并配置相应的SDK和依赖库。
-
界面设计:根据系统的功能需求,设计手机端APP的界面布局和交互方式。界面应简洁明了,方便用户操作。
-
功能实现:
- 设备连接:通过阿里云物联网平台提供的SDK实现手机端APP与设备的连接。在连接过程中,需要进行设备的认证和授权。
- 数据获取:通过MQTT协议从阿里云物联网平台获取设备上报的数据,并在手机端APP上进行实时显示。
- 报警提示:当设备上报的数据超过预设阈值时,手机端APP应弹出报警提示框,提醒用户注意。
- 远程控制(可选):根据系统的需求,可以实现手机端APP对设备的远程控制功能(如调整设备参数、控制设备开关等)。
-
测试与优化:对手机端APP进行测试,包括功能测试、性能测试、兼容性测试等。根据测试结果对APP进行优化和改进,提高其稳定性和用户体验。
五、系统测试与结果分析
(一)测试环境搭建
为了验证系统的性能和可靠性,搭建了相应的测试环境。测试环境包括STM32F103C8T6开发板、传感器模块、ESP8266 Wi-Fi模块、电源模块、阿里云物联网平台以及手机端APP等设备。通过连接这些设备,构建了一个完整的智慧病房监测系统测试平台。
(二)功能测试
- 环境监测测试:对DHT11温湿度传感器模块、烟雾传感器、光敏电阻传感器模块进行了测试,验证了它们能够准确测量病房内的温度、湿度、烟雾浓度和光照强度。同时,测试了当监测数据超过预设阈值时,系统是否能够产生报警提示。
- 生理监测测试:对MAX30102心率传感器模块、LMT70温度传感器进行了测试,验证了它们能够准确测量病人的心率和体温。同时,测试了当监测数据超过预设阈值时,系统是否能够产生报警提醒。
- 数据通信测试:对ESP8266 Wi-Fi模块进行了测试,验证了它能够通过MQTT协议与阿里云物联网平台进行稳定的数据通信。同时,测试了手机端APP是否能够实时获取设备上报的数据。
- 报警系统测试:对系统的报警功能进行了测试,验证了当监测数据超过预设阈值时,蜂鸣器是否能够发出报警声,并且手机端APP是否能够弹出报警提示框。
(三)结果分析
经过测试,本系统能够准确测量病房内的环境参数和病人的生理参数,并通过MQTT协议与阿里云物联网平台进行稳定的数据通信。手机端APP能够实时查看监测数据,并实现远程监控和报警提示等功能。测试结果表明,本系统具有较高的准确性和稳定性,能够应用于实际医疗环境中。
六、结论与展望
(一)结论
本文设计了一种基于STM32F103C8T6单片机、MAX30102心率传感器模块、LMT70温度传感器、DHT11温湿度传感器模块、烟雾传感器、光敏电阻传感器模块以及阿里云物联网平台的智慧病房监测系统。该系统能够实时监测病房内的环境参数和病人的生理参数,并通过MQTT协议与阿里云物联网平台进行数据交互,实现手机端APP的远程监控和数据内容显示。当监测数据超过预设阈值时,系统会产生报警提示,以便医护人员及时采取相应措施。测试结果表明,本系统具有较高的准确性和稳定性,能够应用于实际医疗环境中。
(二)展望
尽管本系统已经实现了基本的智慧病房监测功能,但仍存在一些不足之处和可以改进的地方。例如,可以进一步优化传感器模块的精度和稳定性,提高监测数据的准确性;可以增加更多的传感器模块,如声音传感器、压力传感器等,以更全面地监测病房环境和病人的生理状态;可以开发更完善的手机端APP,提供更丰富的功能和更友好的用户界面;还可以考虑将系统与医院的信息系统进行集成,实现更全面的医疗管理和监控。此外,随着物联网技术的不断发展,未来还可以探索将本系统与其他智能医疗设备进行集成,构建更加智能化的医疗环境。