基于网络 DEA 模型的我国投资基金绩效评价研究

4.1 研究设计
4.1.1 样本选取及数据来源
为了确保对我国投资基金绩效做出尽可能客观的评价,本文在构建研究样本和确
定评价区间时遵循了以下原则:
第一,本文研究时段为 2018 年初至 2022 年末,覆盖市场牛熊转换及盘整阶段,
旨在全面分析基金风险管理和成本控制能力,避免阶段单一分析的局限性。此间,涵
盖股市自 2018 1 26 日触及 3358.13 点高位后直至 2019 1 3 日下滑至 2464.36
点的下跌阶段,紧接着是 2019 1 3 日至 2020 3 23 日间围绕 2660.17 点上
下浮动的盘整期,再到 2020 3 23 日从 2660.17 点攀升至 2021 2 10 3655.09
点的上升期,以及后续的波动整理阶段,完整呈现一个经济周期内的市场波动。在此
期间,尤其值得注意的是 2018 年下半年中美贸易紧张以及 2020 年突如其来的新冠肺
炎疫情对市场波动的显著影响。
第二,考虑到选取的样本基金成立时间在 2016 1 1 日以前,至 2022 年底已
经至少运行了 7 年,说明这些基金产品有不错的运营管理能力,也有足够的数据供本
文研究,且不存在生存偏差和年龄偏差。另外选取的基金样本截至 2023 3 月基金
规模皆不低于 20 亿元,为防止出现极端值,剔除两只超大型基金,因此样本可视为
由健康基金组成。根据以上条件筛选,最终选出 49 只样本基金,包含多种投资类型,
其中被动指数型 14 只,占 28.57% ,偏股混合型 12 只,占 24.49% ,混合债券型 9 只,
18.37% ,其余 QDII5 只,灵活配置型 3 只,商品型 2 只,增强指数型 2 只,中长
期纯债型和封闭式各 1 只,共占 28.58% 。数据来源于万德( Wind )数据库。
4.1.2 投入产出指标的选取
第一阶段(即阶段 A ,运营管理过程)是筹集资金的阶段,因此基金规模被视为
第一阶段的产出,基金管理费用是基金管理公司向基金经理支付的报酬,是针对基金
经理的主要激励方式,能够很好地代表基金经理的运营能力,此外还有销售服务费和
托管费等,由于销售服务费指标数值多为零,不具备很大的参考意义,因此最终选择
基金管理费用率和托管费率作为第一阶段的投入指标。第二阶段(即阶段 B ,资源管
28 第 4 章
我国投资基金绩效评价研究分析
29
理过程)是确保在第一阶段筹集的资金用于第三阶段的投资,因此将基金资产净值
NAV 作为第二阶段的产出,基金资产净值即每一基金份额代表的基金资产的净值,
是衡量一个基金经营业绩的主要指标,计算公式为: NAV= (总资产 - 总负债) / 基金
单位总数。交易成本和记录保存、保管服务、税收、法律费用以及会计和审计费用等
支出未计入阶段 A ,因此,本文还将净费用率视为阶段 B 的投入指标。基金换手率
是基金持仓股票的交易频率,是投资策略的一个量化呈现指标,因此年平均换手率也
作为阶段 B 的投入指标。第三阶段(即阶段 C ,投资组合管理过程)涉及资产管理,
以产生承担风险的回报,因此,本文将基金管理过程中面临的总风险、系统性风险、
下行风险视为阶段 C 的投入指标,将年化收益率视为阶段 C 的产出 [62] 。下表 4-1
本文选取的投入、中间和产出指标及它们的内涵。
4-1 投入、中间和产出变量说明
变量类型
变量名称
变量含义
阶段 A 投入指标
管理费率 ? 1 ?
支付给基金管理人的管理报酬以百分比表示
托管费率 ? 2 ?
基金托管人为保管和处置基金资产而向基金收
取的费用
连接阶段 A 和阶段
B 的中间产品
基金规模 ? ??
以基础货币计算的投资组合的市场价值
阶段 B 投入指标
净费用率 ? 1 ?
年费以百分比表示,用于支付管理费、运营成本
和基金产生的所有其他基于资产的成本等费用。
年平均换手率 ? 2 ?
被替换的持股比例
连接阶段 B 和阶段
C 的中间产品
资产净值 ? ??
以基准货币计算的投资组合减去负债的总价值。
阶段 C 投入指标
总风险 ? 1 ?
周收益的标准差。
系统性风险 ? 2 ?
用周收益计算 CAPM beta
下行风险 ? 3 ?
周收益的下行标准差
产出测量
年化收益率 ? ?
以百分比表示的。
由于在 DEA 模型中,所有参与评价的指标要求为正向关联,即决策单元的任何
投入指标增加时,期望对应的产出指标也同步增长。然而,在本文所研究的第三阶段
情境中,遇到的产出指标“年化收益率”和投入指标“系统性风险”出现部分负值,
不符合 DEA 方法的原始假设。为此,有必要对这类既有正值又有负值的变量进行无
量纲化处理,使其转换为可以在 DEA 中有效使用的标准化数值,确保模型能够准确
反映决策单元的相对效率。本文通过用极差标准化法将数据映射在( 0 1 )之间,虽
然与真实效率存在一定的差异,但对于相对效率排序较为准确,且具有经济学意义。
具体处理公式如下( 4.1 [63]
Y 处理后 = 0.1 + 0.9 ∗
(Y 处理前 −Y min )
(Y max −Y min )
4.1 基于网络 DEA 模型的我国投资基金绩效评价研究
30
4.2 研究结果与分析
4.2.1 总体绩效分析
通过求解模型,可以得到我国投资基金 2018 年至 2022 年的总体效率、联合过程
效率、运营管理过程效率、资源管理过程效率和投资组合过程效率。表 4-2 给出了本
文研究的所有投资基金的相对效率得分的汇总统计。
4-2 所有基金相对效率汇总
运营管理过
程效率
资源管理过
程效率
投资组合管
理过程效率
联合过程
效率
总体管理
效率
小组 A: 2018 年)
平均值
0.5914
0.7067
0.5965
0.6018
0.5981
标准差
0.0609
0.0726
0.0635
0.0573
0.0583
最小值
0.2147
0.2795
0.2446
0.2795
0.2516
中值
0.5610
0.7182
0.6011
0.5918
0.6182
最大值
1.0000
1.0000
1.0000
1.0000
0.9000
有效基金数
6 12%
15 31%
1 2%
6 12% 0 0%
小组 B: 2019 年)
平均值
0.5440
0.6031
0.7139
0.5479
0.6841
标准差
0.0518
0.0814
0.0417
0.0512
0.0319
最小值
0.1831
0.0001
0.2965
0.2299
0.2953
中值
0.4914
0.5132
0.7091
0.4987
0.6684
最大值
1.0000
1.0000
1.0000
1.0000
0.9000
有效基金数
6 12%
13 27%
6 12%
6 12% 0 0%
小组 C: 2020 年)
平均值
0.5953
0.6727
0.6493
0.6023
0.6411
标准差
0.0555
0.0851
0.0377
0.0545
0.0346
最小值
0.2271
0.0042
0.2718
0.2271
0.2795
中值
0.5936
0.6539
0.6158
0.5936
0.6077
最大值
1.0000
1.0000
1.0000
1.0000
0.9000
有效基金数
7 14%
18 37%
2 4%
7 14% 0 0%
小组 D: 2021 年)
平均值
0.6896
0.8372
0.7124
0.7096
0.7124
标准差
0.0627
0.0611
0.0388
0.0550
0.0361
最小值
0.1503
0.0019
0.2339
0.2268
0.2379
中值
0.6547
1.0000
0.7742
0.6858
0.7942
最大值
1.0000
1.0000
1.0000
1.0000
0.9000
有效基金数
10 20%
26 53%
1 22%
10 20% 0 0%
小组 E: 2022 年)
平均值
0.6873
0.7318
0.6749
0.6851
0.6782
标准差
0.0615
0.0640
0.0493
0.0582
0.0456
最小值
0.1907
0.3521
0.3043
0.2635
0.3129
中值
0.6964
0.7153
0.7621
0.6924
0.7583
最大值
1.0000
1.0000
1.0000
1.0000
0.9000
有效基金数
11 22%
19 39%
2 4%
11 22% 0 0% 第 4 章
我国投资基金绩效评价研究分析
31
所有的投资基金在 2018 年至 2022 年的总体管理效率平均得分分别为 0.5981
0.6841 0.6411 0.7124 0.6782 ,整体呈现出波动状态,与处于熊市的 2018 年相比,
往后几年的效率值有所上涨,但整体效率水平低下。从有效基金数来看,资源管理过
程效率达到 DEA 有效的基金数量最多,其中 2021 年超过半数投资基金达到 DEA
效,除 2019 年外,均有超过 30% 的基金达到 DEA 有效。投资组合管理过程达到有
效的基金较少且不同年份差距较大,总体管理在研究期间内没有达到有效的投资基金,
说明我国投资基金的整体效率较低,没有表现优异的投资基金。
本文利用联合过程和投资组合管理过程的效率值绘制效率矩阵,如图 4-1 所示。
效率矩阵的横轴表示 2018 年至 2022 年联合过程效率均值,纵轴表示 2018 年至 2022
年投资组合管理过程效率均值。为了使所有 DMU 在图中清晰呈现各自的位置,本文
将效率矩阵的横坐标轴边界最小值设置为 0.200 ,将纵坐标轴边界最小值设置为
0.3500 。在此基础上,效率矩阵通过平均效率均值分为四个象限,其中横坐标轴联合
过程平均均值为 0.6293 ,纵坐标轴投资组合管理过程平均均值为 0.6694 [64] 。所有 DMU
均在效率矩阵中, DMU1 DMU49 依据投资基金的代码按照升序排列依次对应,完
整数据详见附录。
4-1 联合过程和投资组合管理过程效率矩阵
根据各个投资基金在效率矩阵四个象限中的位置,可以给出对应投资基金提高绩
效的战略建议。例如,深证 100ETF 和华夏蓝筹 LOF (即 DMU1 DMU9 )的联合 基于网络 DEA 模型的我国投资基金绩效评价研究
32
过程效率均值和投资组合管理过程效率均值相同,位于第四象限,即二者的联合过程
效率值大,投资组合管理效率值小。如果深证 100ETF 和华夏蓝筹 LOF 想要提高整
体绩效,则需更加重视二者的投资组合管理过程的绩效提升。而交银添利 LOF (即
DMU31 )位于第二象限,其投资组合管理过程效率值较高,但联合过程效率值较低,
导致其总体绩效水平低下。如果交银添利 LOF 想要提高整体绩效,则需更加重视联
合过程的绩效提升。
本文仅列示部分投资基金的效率测度结果,所示样本根据排名分布随机挑选,不
偏重于表现较好或表现较差的基金,并且下文所有表格所示样本皆相同,因此本文认
为列示的样本可以代表所有样本的大致情况,完整结果详见附录。我国投资基金的总
体效率如下表 4-3 所示。
4-3 总体效率及排名
证券简称 / 年份
2018
2019
2020
2021
2022
均值
排名
华富强债 LOF
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
1
沪深 300LOF
0.9000
0.9000
0.9000
0.9000
0.9000
0.9000
2
中证 500ETF
0.8600
0.9000
0.9000
0.9000
0.9000
0.8920
5
富国天盈 LOF
0.8734
0.8770
0.9000
0.9000
0.9000
0.8901
6
鹏华前海 REIT
0.7728
0.7627
0.9000
0.8751
0.9000
0.8421
9
黄金 ETF 基金
0.9000
0.9000
0.6843
0.8101
0.7723
0.8133
11
富国天锋 LOF
0.6743
0.7724
0.7486
0.8338
0.8380
0.7734
12
万家行业优选
LOF
0.3872
0.7835
0.9000
0.9000
0.8579
0.7657
13
500ETF 联接 LOF 0.6734
0.7293
0.7235
0.7963
0.8744
0.7594
14
华夏蓝筹 LOF
0.9000
0.6176
0.5726
0.8853
0.4074
0.6766
20
中欧趋势 LOF
0.3080
0.6553
0.6054
0.9000
0.9000
0.6737
21
H ETF
0.5440
0.5690
0.6334
0.5919
0.9000
0.6477
25
中小盘 LOF
0.3966
0.5377
0.7884
0.4837
0.9000
0.6213
26
中证 500ETF 基金 0.6464
0.6173
0.6003
0.4944
0.6232
0.5963
29
国投瑞利 LOF
0.3717
0.6098
0.5810
0.9000
0.3336
0.5592
34
500ETF 基金
0.5326
0.5659
0.5867
0.6595
0.4500
0.5589
35
兴全绿色 LOF
0.3970
0.6698
0.5218
0.7942
0.3429
0.5451
37
中欧成长 LOF
0.2933
0.7914
0.6948
0.5563
0.3863
0.5444
38
博时主题 LOF
0.3480
0.4687
0.5119
0.6799
0.6438
0.5305
41
信澳鑫安 LOF
0.2933
0.4114
0.3596
0.3304
0.6194
0.4028
49
均值
0.5986
0.7019
0.7006
0.7545
0.7175
0.6946
从表 4-3 可以看出,在 2018 -2022 年间,大部分投资基金的总体效率呈上升趋
势。 2018 年至 2019 年除鹏华前海 REIT 、华夏蓝筹 LOF 、中证 500ETF 基金等投资
基金的总体效率呈下降趋势以外,大部分的投资基金在此期间是有所提高或者持平的。
2019 年至 2022 年, 49 只投资基金的总体效率除排名前二的华富强债 LOF 和沪深
300LOF 一直保持不变外,其余投资基金的总体效率全部处于波动状态。从均值来看, 第 4 章
我国投资基金绩效评价研究分析
33
样本投资基金从 2018 年至 2021 年,总体效率均值一直处于上升状态,在 2021 年总
体效率均值达到最高,为 0.7545 2021 年至 2022 年总体效率均值略微下降,这可能
是市场盘整期波动所导致的。在投资基金效率方面,本文所选择的 49 只基金在研究
期间均未达到有效,说明我国投资基金整体的效率不高,并且不同投资基金之间的总
体效率差异较大,例如,华富强债 LOF 和沪深 300LOF 2018 年至 2022 年的总体
效率均值为 0.9000 ,而信澳鑫安 LOF 在同一时期的总体效率均值为 0.4028 。华富强
LOF 的基金规模为 26.942 亿元,沪深 300LOF 的基金规模为 91.065 亿元,信澳鑫
LOF 基金规模为 54.890 亿元,由此可见,投资基金的总体效率规模与基金规模并
不构成正比关系,即未必基金规模大,基金的总体效率就高。
为了更好地比较我国不同类型的投资基金总体效率差异,本文将样本所涉及的不
同类型的投资基金在 2018 -2022 年的平均总体效率用图形表示出来,如图 4-2 所示。
本文通过区分投资基金的不同投资类型,将被动指数型、偏股混合型和灵活配置型投
资基金统称为权益类投资基金,混合债券型和中长期纯债型基金统称为债券类基金,
其余基金保持不变。
4-2 不同类型投资基金的年平均总体效率
从图中可以看出封闭式投资基金、债券类投资基金和增强指数型投资基金在研究
期间内总体效率呈现上升趋势,剩余类型投资基金在研究期间内波动较大,尤其是
QDII 型投资基金,五年内总体效率起伏最大,同时也是总体效率提升最明显的一类
投资基金,由 2018 年的平均总体效率最低 0.3396 提升到 2022 年排名第二,总效率
0.8787 ,可见 QDII 型投资基金是研究期间内提升总体效率最显著的基金但在 2020 基于网络 DEA 模型的我国投资基金绩效评价研究
34
年的总体效率急剧下降,不排除受疫情影响的原因。权益类投资基金和商品型投资基
金是在研究期间内仅有的两类总体效率下降的投资基金,分别从 2018 年的 0.5587
0.9000 下降到 2022 年的 0.5292 0.7702 ,其中商品型投资基金在 2020 年的效率下
滑也可能是受到疫情的影响,且不同于 QDII 型投资基金绩效下滑后迅速反弹,商品
型投资基金此后的绩效水平并未立即恢复高位,总体效率有待进一步提升,可见其抵
御风险能力一般。整体来看,在研究期间内总体效率表现较好的是封闭式投资基金,
总体表现平稳,起伏不大,从 2020 年至 2022 年一直将总体效率保持在 0.9000 左右,
排名第一。总体效率最低的当属增强指数型投资基金,虽然在研究期间内该类型投资
基金的总体效率逐年提升,但相比于其他类型的投资基金增速缓慢,总体效率排名一
直处于垫底状态,但总效率的发展趋势向好,未来赶超其他类型投资基金未必没有希
望。
4.2.2 联合过程绩效分析
4-4 列示了我国部分投资基金的联合过程效率以及排名情况。
4-4 联合过程效率及排名
证券简称 / 年份
2018
2019
2020
2021
2022
均值
排名
沪深 300LOF
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1
华富强债 LOF
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
2
中证 500ETF
0.9556
1.0000
1.0000
1.0000
1.0000
0.9911
4
鹏华前海 REIT
0.7246
0.8474
1.0000
0.8359
1.0000
0.8816
6
500ETF 联接 LOF
0.7482
0.8104
0.8039
0.8847
0.9716
0.8437
7
华夏蓝筹 LOF
1.0000
0.6862
0.6362
0.9837
0.4527
0.7518
9
万家行业优选
LOF
0.4302
0.2664
1.0000
1.0000
0.9532
0.7300
11
H ETF
0.6045
0.6323
0.7037
0.6577
1.0000
0.7196
13
黄金 ETF 基金
0.6565
0.6142
0.7603
0.9001
0.6573
0.7177
14
富国天锋 LOF
0.6042
0.4987
0.6918
0.8740
0.8879
0.7113
15
中欧趋势 LOF
0.3422
0.4430
0.5936
1.0000
1.0000
0.6758
18
中证 500ETF 基金
0.7182
0.6859
0.6670
0.5494
0.6924
0.6626
20
富国天盈 LOF
0.5383
0.6273
0.5491
1.0000
0.5851
0.6600
21
500ETF 基金
0.5918
0.6288
0.6518
0.7326
0.5000
0.6210
25
博时主题 LOF
0.3867
0.4914
0.5688
0.7554
0.7153
0.5835
30
中小盘 LOF
0.4407
0.4285
0.4197
0.5374
1.0000
0.5653
31
中欧成长 LOF
0.3259
0.4037
0.7720
0.6181
0.4292
0.5098
37
兴全绿色 LOF
0.4411
0.3997
0.2630
0.8368
0.3810
0.4643
43
国投瑞利 LOF
0.4130
0.4116
0.4305
0.5105
0.3706
0.4272
44
信澳鑫安 LOF
0.3043
0.4560
0.3743
0.3333
0.6019
0.4140
45
均值
0.6113
0.6166
0.6943
0.8005
0.7599
0.6965 第 4 章
我国投资基金绩效评价研究分析
35
根据表 4-4 可知,在 2018 -2022 年间各个投资基金联合过程的效率差距比较明
显。沪深 300LOF 、华富强债 LOF 和中证 500ETF 易方达(表中未列出)的联合效率
2018 年至 2022 年都达到了相对有效,平均效率为 1 ,在 49 只投资基金中处于前
列,而信澳鑫安 LOF 、国投瑞利 LOF 等基金在研究期间内的平均联合效率只在 0.4
左右。另外,从表 4-3 可以看出,我国投资基金联合过程效率的总体走势是先上升后
下降的。而且联合过程效率提升速度较为迅速,如万家行业优选 LOF 2018 年和
2019 年的联合效率处于低水平,效率值分别为 0.4302 0.2664 ,但却在此后连续两
年联合效率为 1 ,达到相对高效,这可能与 2019 3 月底更换基金经理有关,联合
过程包含运营管理过程和资源管理过程,这与基金经理的个人能力密切相关,投资基
金更换能力更强的基金经理是提升基金效率的有效途径,这从万家行业优选 LOF
研究期间内的总体效率值上便可窥见一斑,如表 4-3 所示,万家行业优选 LOF 2018
年的总体效率为 0.3872 2019 年为 0.7835 ,总效率提升 102.35% ,此后三年该投资基
金的总体效率一直处于较高水平,效率值在 0.8 左右。
为了更直观地分析不同类型投资基金在联合过程效率方面的差异,本文用图 4-3
加以描述。
4-3 不同类型投资基金的年平均联合过程效率
由图 4-3 可以以看出,除商品型投资基金和权益类投资基金的联合过程效率在
2021 年至 2022 年有所下降外,其余基金在研究期间内整体处于上升趋势,说明这些
类型投资基金在研究期间内的运营管理和资源管理整体效率都有所提升。封闭式投资
基金在研究期间内的联合效率一直优于其他类型投资基金,且在 2020 年和 2022 年达 基于网络 DEA 模型的我国投资基金绩效评价研究
36
到相对有效,平均效率值为 1 ,是所有类型基金中联合过程表现最好的。这可能与封
闭式基金的特性有关,这类型的投资基金不能随时被赎回,其资金规模相对稳定。因
此,基金经理通常能够设计长期的投资策略,并且在封闭期内对基金的表现没有太大
的关注,所以也较少会考虑到投资者的情绪因素从而影响投资决策。权益类投资基金
和商品型投资基金在研究期间内的走势基本一致,尤其是 2022 年相比于 2021 年,当
其他类型投资基金的联合效率都有所提升时,这两类投资基金的联合过程效率反而下
降,对比图 4-2 可以看出,其中权益类投资基金在 2021 年至 2022 年的走势与其总体
效率在这两年的走势一致,商品型投资基金则相反,说明联合过程效率并不能直接决
定总体效率。债券类投资基金、增强指数型投资基金和 QDII 型投资基金在研究期间
内的联合过程效率走势一致,都是平稳上升,其中债券类基金效率表现最佳,增强指
数型投资基金次之。
4.2.3 运营管理过程和资源管理过程绩效分析
我国部分投资基金的运营管理过程和资源管理过程效率以及排名情况如下表 4-5
4-6 所示。
4-5 运营管理过程效率及排名
证券简称 / 年份
2018
2019
2020
2021
2022
均值
排名
沪深 300LOF
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1
华富强债 LOF
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
3
中证 500ETF
0.9556
1.0000
1.0000
1.0000
1.0000
0.9911
4
鹏华前海 REIT
0.7246
0.8474
1.0000
0.8359
1.0000
0.8816
6
500ETF 联接 LOF 0.7482
0.7916
0.7845
0.8733
0.9688
0.8333
7
华夏蓝筹 LOF
1.0000
0.6862
0.6362
0.9837
0.4527
0.7518
8
万家行业优选
LOF
0.4302
0.2664
1.0000
1.0000
0.9532
0.7300
9
富国天锋 LOF
0.6042
0.4987
0.6918
0.8740
0.8879
0.7113
11
H ETF
0.5654
0.5959
0.6744
0.6238
1.0000
0.6919
12
黄金 ETF 基金
0.6225
0.5761
0.7366
0.8903
0.6234
0.6898
13
中欧趋势 LOF
0.3422
0.4430
0.5936
1.0000
1.0000
0.6758
17
富国天盈 LOF
0.5383
0.6273
0.5491
1.0000
0.5851
0.6600
20
中证 500ETF 基金 0.7182
0.6859
0.6670
0.5048
0.6924
0.6537
22
500ETF 基金
0.5514
0.5921
0.6174
0.7062
0.5270
0.5988
27
博时主题 LOF
0.3260
0.4914
0.5688
0.7554
0.7153
0.5714
30
中小盘 LOF
0.4407
0.4285
0.4197
0.5374
1.0000
0.5653
31
中欧成长 LOF
0.3259
0.4037
0.7495
0.5803
0.4292
0.4977
37
兴全绿色 LOF
0.4411
0.3997
0.2630
0.8368
0.3793
0.4640
42
国投瑞利 LOF
0.4130
0.4116
0.4305
0.5105
0.3682
0.4268
44
信澳鑫安 LOF
0.3043
0.4560
0.3743
0.3333
0.6019
0.4140
45
均值
0.6026
0.6101
0.6878
0.7923
0.7592
0.6904 第 4 章
我国投资基金绩效评价研究分析
37
4-6 资源管理过程效率及排名
证券简称 / 年份
2018
2019
2020
2021
2022
均值
排名
华富强债 LOF
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1
沪深 300LOF
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
3
黄金 ETF 基金
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
4
H ETF
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
5
中证 500ETF
0.9556
1.0000
1.0000
1.0000
1.0000
0.9911
6
500ETF 联接 LOF 0.7482
1.0000
1.0000
1.0000
1.0000
0.9496
8
500ETF 基金
1.0000
1.0000
1.0000
0.9994
0.4370
0.8873
11
鹏华前海 REIT
0.7246
0.8474
1.0000
0.8359
1.0000
0.8816
12
中证 500ETF 基金 0.7182
0.6859
0.6670
1.0000
0.6924
0.7527
19
华夏蓝筹 LOF
1.0000
0.6862
0.6362
0.9837
0.4527
0.7518
20
万家行业优选
LOF
0.4302
0.2664
1.0000
1.0000
0.9532
0.7300
21
富国天锋 LOF
0.6042
0.4987
0.6918
0.8740
0.8879
0.7113
22
博时主题 LOF
1.0000
0.4914
0.5688
0.7554
0.7153
0.7062
23
中欧趋势 LOF
0.3422
0.4430
0.5936
1.0000
1.0000
0.6758
26
富国天盈 LOF
0.5383
0.6273
0.5491
1.0000
0.5851
0.6600
29
中欧成长 LOF
0.3259
0.4037
1.0000
1.0000
0.4292
0.6317
32
中小盘 LOF
0.4407
0.4285
0.4197
0.5374
1.0000
0.5653
40
兴全绿色 LOF
0.4411
0.3997
0.2630
0.8368
0.3985
0.4678
44
国投瑞利 LOF
0.4131
0.4116
0.4305
0.5105
0.3953
0.4322
47
信澳鑫安 LOF
0.3043
0.4560
0.3743
0.3333
0.6019
0.4140
48
均值
0.6993
0.6823
0.7597
0.8833
0.7774
0.7604
从表 4-5 可以看出只有三只基金在研究期间内运营管理过程效率都达到了有效,
它们分别是沪深 300LOF 、华富强债 LOF 和中证 500ETF 易方达(表中未列出),这
三只基金的资源管理过程的效率和联合过程效率在研究期间内也达到了有效。从表
4-6 可以看到,黄金 ETF 基金和 H ETF 两只投资基金的资源管理过程效率在研究
期间内都达到了有效,但这两只基金的运营管理过程效率表现欠佳,排名分别为 13
12 ,只有 H ETF 2022 年达到有效,结合表 4-4 中可以看到,只有 H ETF
2022 年的联合过程效率值为 1 ,其余时间两只投资基金的联合过程效率均未达到
有效。由此可以得出结论:联合过程达到有效的基金,其运营管理阶段和资源管理阶
段的效率都达到了有效;前两个阶段中只有一个阶段达到有效的基金,其联合过程效
率不能达到有效。这个结论也可以从中欧趋势 LOF 、中欧成长 LOF 、中小盘 LOF
投资基金的各个阶段效率中得到验证。
下图 4-4 和图 4-5 分别为不同类型投资基金的各年平均运营管理过程和资源管理
过程的效率值。 基于网络 DEA 模型的我国投资基金绩效评价研究
4-4 不同类型投资基金的年平均运营管理过程效率
4-5 不同类型投资基金的年平均资源管理过程效率
对比图 4-3 、图 4-4 和图 4-5 ,可以清楚地看出权益类投资基金、债券类基金、增
强指数型、封闭式等投资基金的运营管理过程、资源管理过程与联合过程效率走势基
本一致,但商品型投资基金和 QDII 型投资基金三个过程的走势差异较为明显。商品
型投资基金的运营管理过程和联合过程在 2021 年至 2022 年差异较大,该类型投资基
金的运营管理过程效率这两年内基本持平,但资源管理过程效率从 2021 年的 1.0000
下降至 2022 年的 0.6822 ,从有效变为无效。商品型投资基金运营管理过程在研究期
间内效率值逐渐提升,但效率值较低,未达到过高效水平。但其资源管理过程表现较
好,在 2018 年至 2021 年都是表现相对最好的一类投资基金,只不过 2022 年资源管
理水平相对下滑严重,致使其联合过程效率也出现下滑,可见商品型投资基金在保证
38 第 4 章
我国投资基金绩效评价研究分析
39
其运营管理方面稳步提升的同时,更不能忽视其资源管理方面的稳定性。从图 4-3
可以看出 QDII 型投资基金相比于其他类型投资基金,是在联合过程表现较差的一类
基金,联合图 4-4 和图 4-5 QDII 型投资基金无论是运营管理过程还是资源管理过程,
前期表现都可以称之为不佳。但其资源管理过程在 2021 年和 2022 年的效率值都保持
0.85 左右,实现大幅度提升,其运营管理过程在研究期间内的效率值也在逐步提
升,联合过程表现出明显的上升趋势。再结合图 4-2 QDII 型基金从 2020 年至 2022
年总体效率出现大幅度提升,可见该类型投资基金在未来有很大的潜力,有望成为总
体有效基金,其他类型投资基金可以参考 QDII 的运营管理和资源管理模式,以提升
其阶段效率。
4.2.4 投资组合管理过程绩效分析
我国部分投资基金的投资组合管理过程效率以及排名情况如下表 4-7 所示。
4-7 投资组合管理过程效率及排名
证券简称 / 年份
2018
2019
2020
2021
2022
均值
排名
富国天盈 LOF
0.9216
0.9394
0.9877
0.8750
0.9787
0.9405
3
华富强债 LOF
0.8750
0.8750
0.8750
0.8750
0.8750
0.8750
6
沪深 300LOF
0.8750
0.8750
0.8750
0.8750
0.8750
0.8750
7
中证 500ETF
0.8361
0.8750
0.8750
0.8750
0.8750
0.8672
8
鹏华前海 REIT
0.7688
0.7415
0.8750
0.8850
0.8750
0.8291
11
黄金 ETF
0.9889
1.0000
0.5075
0.6134
0.8350
0.7890
12
富国天锋 LOF
0.6738
0.8409
0.7628
0.8237
0.8256
0.7854
13
万家行业优选 LOF 0.3764
0.9128
0.8750
0.8750
0.8340
0.7746
14
500ETF 联接 LOF
0.6547
0.7091
0.7034
0.7742
0.8501
0.7383
17
中欧趋势 LOF
0.2994
0.7084
0.6083
0.8750
0.8750
0.6732
21
华夏蓝筹 LOF
0.8750
0.6004
0.5567
0.8607
0.3961
0.6578
23
中小盘 LOF
0.3856
0.5649
0.8806
0.4702
0.8750
0.6353
25
H ETF
0.5289
0.5532
0.6158
0.5755
0.8750
0.6297
27
国投瑞利 LOF
0.3614
0.6593
0.6186
0.9974
0.3243
0.5922
30
中证 500ETF 基金
0.6285
0.6002
0.5836
0.4807
0.6059
0.5798
33
兴全绿色 LOF
0.3860
0.7374
0.5865
0.7835
0.3334
0.5653
35
中欧成长 LOF
0.2851
0.8883
0.6755
0.5408
0.3756
0.5531
37
500ETF 基金
0.5178
0.5502
0.5704
0.6412
0.4375
0.5434
40
博时主题 LOF
0.3384
0.4630
0.4977
0.6610
0.6259
0.5172
43
信澳鑫安 LOF
0.2822
0.4003
0.3560
0.3297
0.6238
0.3984
49
均值
0.5929
0.7247
0.6943
0.7343
0.7085
0.6910
由表 4-7 可知,前两阶段表现较好的沪深 300LOF 和华富强债 LOF ,其投资组合
管理过程效率排名仅分别为第 7 名和第 6 名,反而在其他阶段效率排名相对靠后的富
国天盈 LOF ,投资组合管理过程效率排名至第 3 。富国天盈 LOF 的联合过程排名第 基于网络 DEA 模型的我国投资基金绩效评价研究
21 ,运营管理过程排名第 20 ,资源管理过程排名第 29 ,总体效率排名第 6 ,可见表
现较好的投资组合管理基金可能在其他管理方面的排名较差,即运营管理和资源管理,
良好的总体绩效可能并不意味着良好的联合过程管理绩效。这对投资基金经理来说是
很重要的信息,因为如果没有整体效率分解,他们就会对哪些管理流程或基金管理的
哪些方面可能影响他们的整体绩效视而不见。基金的良好表现是由于管理技巧还是运
气,人们经常争论 [65] 。在这种情况下,投资基金的表现是在控制了费用和开支等成本
并主要关注投资组合的管理后,根据异常回报来评估的。本文对投资基金绩效评估覆
盖面更广,因此,本文从更广泛的角度为这场辩论做出贡献。
为了更直观地分析不同类型投资基金在投资组合管理过程效率方面的差异,本文
用图 4-6 加以描述。
4-6 不同类型投资基金的年平均投资组合管理过程效率
从图 4-6 中可以看出,在效率值方面,没有一类投资基金的投资组合管理过程效
率在研究期间内达到有效,并且各类型投资基金在不同年份效率值差异较大。 2018
年是不同类型投资基金投资组合管理效率值差异最大的一年,最差的是 QDII 型基金,
效率值只有 0.3303 ,效率值最高的是商品型投资基金,效率值为 0.9749 ,几近有效。
总体来看,各类型投资基金投资组合管理过程效率在研究期间内的走势与总体效率走
势基本一致,二者相关性较大。从图 4-6 中也可以看出, 2019 年至 2020 年投资组合
管理过程效率值下降的基金类型明显增多,只有封闭式投资基金的该过程绩效上涨,
其余类型基金在该阶段的绩效皆有不同程度的下降,这是与其他阶段明显不同之处,
40 第 4 章
我国投资基金绩效评价研究分析
41
本文认为,这很大原因是新冠疫情爆发导致的,疫情虽然没有使得投资基金在总体效
率上有集中统一的明显变化,但是在投资组合管理效率上体现出了先跌后涨的趋势。
4.2.5 有关中间资源不平衡的绩效分析
本文以 2022 年总体效率排名前二十的样本为例,对有关中间资源不平衡的测量
值进行分析。
4-8 2022 年总体效率值排名前 20 的基金相关过程效率
证券简称
运营管理
过程效率
资源管理
过程效率
投资组合
管理过程
效率
联合过程效率
总体效
IRI
中证 500ETF
1.0000
1.0000
0.8750
1.0000
0.9000
0.0683
沪深 300LOF
1.0000
1.0000
0.8750
1.0000
0.9000
0.0584
中小盘 LOF
1.0000
1.0000
0.8750
1.0000
0.9000
0.0202
易基岁丰添利 LOF
1.0000
1.0000
0.8750
1.0000
0.9000
0.0751
中概互联网 LOF
1.0000
1.0000
0.8750
1.0000
0.9000
0.0440
中证 500ETF 易方
1.0000
1.0000
0.8750
1.0000
0.9000
0.0732
华宝油气 LOF
0.1907
1.0000
1.0000
0.2635
0.9000
0.0106
招商双债 LOF
0.8410
1.0000
0.9112
0.8554
0.9000
0.0225
鹏华前海 REIT
1.0000
1.0000
0.8750
1.0000
0.9000
0.0684
广发小盘 LOF
1.0000
1.0000
0.8750
1.0000
0.9000
0.0621
华富强债 LOF
1.0000
1.0000
0.8750
1.0000
0.9000
0.0363
富国天盈 LOF
0.5851
0.5851
0.9787
0.5851
0.9000
0.0127
标普 500ETF
0.9309
1.0000
0.8907
0.9371
0.9000
0.0034
中欧趋势 LOF
1.0000
1.0000
0.8750
1.0000
0.9000
0.0471
H ETF
1.0000
1.0000
0.8750
1.0000
0.9000
0.0612
交银添利 LOF
0.3948
0.3948
1.0000
0.3948
0.8933
0.0894
500ETF 联接 LOF
0.9688
1.0000
0.8501
0.9716
0.8744
0.0884
万家行业优选 LOF
0.9532
0.9532
0.8340
0.9532
0.8579
0.0419
富国天锋 LOF
0.8879
0.8879
0.8256
0.8879
0.8380
0.0911
纳指 ETF
0.3521
0.3521
0.9036
0.3521
0.7933
0.0374
由表 4-8 可以看出, 2022 年总体效率排名前 20 的投资基金没有不存在中间资源
不平衡的,即所有投资基金的中间过程都有一定程度的资源损耗,与国外投资基金相
比,我国投资基金的内部管理还有待进一步提升。 IRI 值的实用价值在于,当不同投
资基金各阶段效率值相同时,可以用 IRI 值来区分在任何业绩水平上排名相等的基金。
例如,表 4-8 中的中证 500ETF 和沪深 300LOF 各个阶段的效率值都相同,然而,它
们的 IRI 值是不同的,因此,本文将中证 500LOF 的排名排在沪深 ETF 之上,因为 IRI
值越高,内部资源的利用效率越好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值