设在实数范围内解方程 12 x − 11 ⋅ 15 x − 11 + 15 x − 11 ⋅ 20 x − 11 + 20 x − 11 ⋅ 12 x − 11 = 11. \sqrt{12x-11}\cdot \sqrt{15x-11} + \sqrt{15x-11}\cdot \sqrt{20x-11}+\sqrt{20x-11}\cdot \sqrt{12x-11}=11. 12x−11⋅15x−11+15x−11⋅20x−11+20x−11⋅12x−11=11.
题目来源:在微信号“唯数是萌”看到的。根据该公众号说,题目来源是“数学趣题推荐官”。
解:首先, x > 11 / 12 x>11/12 x>11/12. 其次,发现 x = 1 x=1 x=1是原方程的一个根。令 y = x − 1 y=x-1 y=x−1. 原方程变成
( 12 y + 1 ) ( 15 y + 4 ) − 1 ⋅ 4 + ( 15 y + 4 ) ( 20 y + 9 ) − 4 ⋅ 9 + ( 20 y + 9 ) ( 12 y + 1 ) − 9 ⋅ 1 = 0. \sqrt{(12y+1)(15y+4)}-\sqrt{1\cdot 4} + \sqrt{(15y+4)(20y+9)} - \sqrt{4 \cdot 9} + \sqrt{(20y+9)(12y+1)}-\sqrt{9\cdot 1} = 0. (12y+1)(15y+4)−1⋅4+(15y+4)(20y+9)−4⋅9+(20y+9)(12y+1)−9⋅1=0.
化简成
y [ 180 y + 63 ( 12 y + 1 ) ( 15 y + 4 ) + 2 + 300 y + 215 ( 15 y + 4 ) ( 20 y + 9 ) + 6 + 240 y + 128 ( 20 y + 9 ) ( 12 y + 1 ) + 3 ] = 0. y[\frac{180y+63}{\sqrt{(12y+1)(15y+4)} + 2} + \frac{300y+215}{\sqrt{(15y+4)(20y+9)} + 6} + \frac{240y+128}{\sqrt{(20y+9)(12y+1)}+3}]=0. y[(12y+1)(15y+4)+2180y+63+(15y+4)(20y+9)+6300y+215+(20y+9)(12y+1)+3240y+128]=0.
中括号内的表达式在 y > − 1 / 12 y>-1/12 y>−1/12时是正数。所以只有 y = 0 y=0 y=0一个解,即原方程有唯一解 x = 1 x=1 x=1.
公众号“唯数是萌”的解法是:令 t = 11 / x t=11/x t=11/x. 从 x > 0 ⟹ t > 0 x>0 \Longrightarrow t>0 x>0⟹t>0. 原方程化为
( 12 − t ) ( 15 − t ) + ( 15 − t ) ( 20 − t ) + ( 20 − t ) ( 12 − t ) = t . \sqrt{(12-t)(15-t)} + \sqrt{(15-t)(20-t)} + \sqrt{(20-t)(12-t)} = t. (12−t)(15−t)+(15−t)(20−t)+(20−t)(12−t)=t.
由于 t > 0 t>0 t>0, 此时方程左边关于 t t t单调递减,而右边单调递增,所以得出只有 t = 11 t=11 t=11(即 x = 1 x=1 x=1)这个根。