终于有人把【微软MOS认证】说清楚了

微软MOS认证的考试方式采用线上考试,没有专门的考试软件,而是采用远程控制考试中心电脑考试的方式!今天就大家详细的介绍一下微软MOS认证的考试流程和和备考方法!

🌈报名前必知
①考试版本:根据平时用office版本选择
②考试语言:中文和英文(可以选择,证书都是一样的)
③考试证书等级:考助理级?考专家级?还是考最高级证书?

🌈微软MOS报名方式 
微软MOS报名有2种方式: 
1、自己去官网报名 
2、通过官方授权机构报名 

🌈微软MOS报名流程和备考方法:
1、报名缴费
2、绑定课程和模拟题课程
3、进入考试群,在下课程配套资料。报英文的下载英文的配套资料,报中文的下载中文的配套资料。
4、复习备考(方法):首先,先学视频,将视频中功能练熟,题目看懂,然后,考试的答题时间是 50 分钟做 35 个小任务,日常练习平均一题保证在 1 分 30 秒内完成;最后,自测模拟题, 先做后看答案,正确率高于 95%就可以预约考试了。

🌈预约考试流程:
📍注册考试账号
📍填写预约考试链接
📍熟悉 windows 系统自带的远程桌面
📍安装手机或者电脑版本的腾讯会议
📍仔细观看教学视频中关于考试界面的介绍,以及群文件里的考试必看文件

🌈微软MOS考试详情 
✅题型题量:操作题(35小题左右)
✅考试方式:线上
✅考试时长:50分钟 
✅考试分数:满分1000分,700分合格 

🌈正式考试以及电脑的要求:
1、到了预约考试的时间,先进入腾 讯会议
2、监考老师与考生确认信息后,协助考生通过远程桌面连接考试系统学员可以开始考试
️🔔考试建议用 15 寸以上的显示器,如果因为考试界面影响操作可以跟监考老师联系,调整分辨率。考试系统要求的最低分辨率是 1280*800。

🌈考试证书:
电子证书:通过考试后可直接在certiport官网查看下载
纸质证书:通过所有科目考试后,在通过考试后在考试群登记相关信息,纸质证书邮寄周期为一个月左右!

### Transformer 模型详解 #### 一、Transformer 整体架构 Transformer 是一种基于自注意力机制(Self-Attention Mechanism)的神经网络模型,旨在解决序列数据处理中的长期依赖问题。该模型摒弃了传统的循环神经网络(RNN) 和卷积神经网络(CNN),完全依靠自注意力机制来捕捉输入和输出之间的全局依赖关系[^1]。 整个架构由编码器(Encoder)和解码器(Decoder)两部分组成: - **编码器**:负责接收输入序列并将其转换成高维向量表示; - **解码器**:根据编码器产生的上下文信息生成目标序列; 两者之间通过多头自注意层(Multi-head Self-Attention Layer)连接,在每一层内部还包含了前馈神经网络(Feed Forward Neural Network, FFN)[^2]。 ```mermaid graph LR; A[Input Sequence] --> B{Encoder Stack}; subgraph Encoder Layers C[MHSA (Multi Head Self Attention)] --- D[Add & Norm]; E[FFN (Feed Forward Networks)] --- F[Add & Norm]; end G{Decoder Stack} <-- H[Memory from Encoders]; I[Output Sequence] <-- J{Decoder Layers} ``` #### 二、工作流程解析 当给定一个源语言句子作为输入时,经过分词后得到一系列token组成的列表。这些tokens会被映射到对应的嵌入(embedding)空间中形成矩阵形式的数据。随后进入多个相同的编码单元堆叠而成的编码栈内进行特征提取操作。每个编码单元主要包含两个子模块——一个多头自关注层用于计算query(Q), key(K), value(V)三者间的相似度得分,并据此调整value权重获得新的context vector; 另一个是全连接前馈网络用来进一步变换维度大小以便更好地表达语义信息。 对于翻译任务而言,则需额外构建一组类似的解码组件以逐步预测下一个可能的目标单词直至结束符为止。值得注意的是,在训练阶段为了加速收敛速度通常会采用teacher forcing技术即利用真实的上一步骤输出而非当前时刻所估计的结果参与后续迭代更新过程。 #### 三、核心特性阐述 ##### 自注意力机制 这是Transformer区别于其他传统RNN/CNN的最大亮点之一。它允许模型在同一时间步长下同时考虑所有位置的信息而不仅仅是相邻几个节点的影响范围。具体实现方式就是让每一个position都能与其他任意一处建立联系并通过softmax函数规范化后的概率分布加权求和最终得出综合考量过全部因素的新状态描述。 ##### 多头设计 考虑到单一head可能会丢失某些重要的局部模式匹配机会因此引入了multi-head策略使得不同heads可以专注于特定类型的关联性挖掘从而提高整体表现力。简单来就是在同一层次里平行运行若干组独立却又相互补充的小规模self-attention units然后把它们各自的输出拼接起来再送往下一层继续加工处理直到最后一刻才汇总输出最终结果。 ##### 前馈神经网络 除了上述提到的核心部件之外每层还会配备有一个简单的线性变换+ReLU激活构成的标准MLP结构充当非线性的引入手段增强系统的表征能力同时也起到一定的正则化作用防止过拟合现象发生。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值