Pytorch数据处理工具箱
一、torchvision
二、transforms
1、transforms提供了对PIL Image对象和Tensor对象的常用操作。
1)对PIL Image的常见操作如下。
transforms提供了对PIL Image对象和Tensor对象的常用操作。
2)对Tensor的常见操作如下。
如果要对数据集进行多个操作,可通过Compose将这些操作像管道一样拼接起来,类似于nn.Sequential。
2、transforms提供了对PIL Image对象和Tensor对象的常用操作。
三、ImageFolder
1、ImageFolder可以读取不同目录下的图像数据。
2、ImageFolder可以读取不同目录下的图像数据。
运行结果:
3、ImageFolder可以读取不同目录下的图像数据。
四、可视化工具
五、TensorBoard简介
1、使用TensorBoard的一般步骤如下。
1)导入tensorboard,实例化SummaryWriter类,指明记录日志路径等信息。
from torch.utils.tensorboard import SummaryWriter
#实例化SummaryWriter,并指明日志存放路径。在当前目录没有logs目录将自动创建。
writer = SummaryWriter(log_dir='logs')
#调用实例
writer.add_xxx()
#关闭writer
writer.close()
使用TensorBoard的一般步骤如下。
2)调用相应的API接口,接口一般格式为:
add_xxx(tag-name, object, iteration-number)
#即add_xxx(标签,记录的对象,迭代次数)
其中,xxx指的是各种可视化方法。
各种可视化方法如下表所示。
使用TensorBoard的一般步骤如下。
3)启动tensorboard服务。cd到logs目录所在的同级目录,在命令行输入如下命令,logdir等式右边可以是相对路径或绝对路径。
tensorboard --logdir=logs --port 6006
#如果是windows环境,要注意路径解析,如
#tensorboard --logdir=r'D:\myboard\test\logs' --port 6006
4)Web展示。在浏览器输入:
http://服务器IP或名称:6006 #如果是本机,服务器名称可以使用localhost
六、用TensorBoard可视化神经网络
1、
运行结果:
2、
运行结果:
3、
运行结果: