人工智能图像识别机器学习 1

机器学习1

一、集成算法的简介

对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断好。

集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务等。

结合策略

1、 简单平均法

2、 加权平均法 

集成学习的结果通过投票法产生?即“少数服从多数”

 

二、Pytorch实现cifar10多分类(2)

1、使用模型

#导入需要的模块

import torch

import torch.nn as nn

import torch.optim as optim

import torch.nn.functional as F

import torch.backends.cudnn as cudnn

import numpy as np

import torchvision

import torchvision.transforms as transforms

from torch.utils.data import DataLoader

from collections import Counter

 

#定义一些超参数

BATCHSIZE=100

DOWNLOAD_MNIST=False

EPOCHES=20

LR=0.001

 

#定义相关模型结构,这三个网络结构比较接近

 

class CNNNet(nn.Module):

    def __init_(self):

        super(CNNNet,self).__init__()

        self.conv1 = nn.Conv2d(in_channels=3,out_channels=16,kernel_size=5,stride=1)

        self.pool1 = nn.MaxPool2d(kernel_size=2,stride=2)

        self.conv2 = nn.Conv2d(in_channels=16,out_channels=36,kernel_size=3,stride=1)

        self.pool2 = nn.MaxPool2d(kernel_size=2,stride=2)

        self.fc1 = nn.Linear(1296,128)

        self.fc2 = nn.Linear(128,10)

 

    def forward(self,x):

        x=self.pool1(F.relu(self.conv1(x)))

        x=self.pool2(F.relu(self.conv2(x)))

        #print(x.shape)

        x=x.view(-1,36*6*6)

        x=F.relu(self.fc2(F.relu(self.fc1(x))))

        return x

 

class Net(nn.Module):

    def __init_(self):

        super(Net,self).__init__()

        self.conv1 = nn.Conv2d(3, 16, 5)

        self.pool1 = nn.MaxPool2d(2, 2)

        self.conv2 = nn.Conv2d(16, 36, 5)

        #self.fc1 = nn. Linear(16 * 5 * 5, 120)

        self.pool2 = nn.MaxPool2d(2, 2)

        self.aap=nn.AdaptiveAvgPool2d(1)

        #self.fc2 = nn.Linear(120, 84)

        self.fc3 = nn.Linear(36, 10)

 

    def forward(self,x):

        x = self.pool1(F.relu(self.conv1(x)))

        x = self.pool2(F.relu(self.conv2(x)))

        #print(x.shape)

        #x = x.view(-1, 16 * 5 * 5)

        x=self.aap(x)

        #print(x.shape)

        #x = F.relu(self.fc2(x))

        x = x.view(x.shape[0], -1)

        #print(x.shape)

        x=self.fc3(x)

        return x

 

class LeNet(nn.Module):

    def __init__(self):

        super(LeNet, self).__init__()

        self.convl = nn.Conv2d(3, 6, 5)

        self.conv2 = nn.Conv2d(6, 16, 5)

        self.fc1 = nn.Linear(16*5*5, 120)

        self.fc2 = nn.Linear(120, 84)

        self.fc3 = nn.Linear(84, 10)

        

    def forward(self, x):

        out = F.relu(self.conv1(x))

        out = F.max_pool2d(out, 2)

        out = F.relu(self.conv2(out))

        out = F.max_pool2d(out, 2)

        out = out.view(out.size(0),-1)

        out = F.relu(self.fc1(out))

        out = F.relu(self.fc2(out))

        out = self.fc3(out)

        return out

 

cfg = {

    'VGG16':[64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],

    'VGG19':[64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M' ],

}

class VGG(nn.Module):

    def __init__(self, vgg_name):

        super(VGG, self).__init__()

        self.features = self._make_layers(cfg[vgg_name])

        self.classifier = nn.Linear(512, 10)

 

    def forward(self, x):

        out = self.features(x)

        out = out.view(out.size(0),-1)

        out = self.classifier(out)

        return out

 

    def _make_layers(self,cfg):

        layers = []

        in_channels = 3

        for x in cfg:

            if x= = 'M':

                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]

            else:

                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),

                    nn.BatchNorm2d(x),

                    nn.ReLU(inplace=True)]

        in_channels = x

        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]

        return nn.Sequential(*layers)

 

#导入数据,这里数据已下载本地,设download=False

 

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

 

 

# Data

print('==> Preparing data..')

transform_train = transforms.Compose([

    transforms.RandomCrop(32, padding=4),

    transforms.RandomHorizontalFlip(),

    transforms.ToTensor(),

    transforms.Normalize((0.4914, 0.4822, 0.4465),(0.2023, 0.1994, 0.2010)),

])

 

transform_test = transforms.Compose([

    transforms.ToTensor(),

    transforms.Normalize((0.4914, 0.4822, 0.4465),(0.2023, 0.1994, 0.2010)),

])

 

trainset = torchvision.datasets.CIFA10(root='./data', train=True, download=False, transform=transform_train)

trainloader = torch,utils,data,DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)

 

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)

testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

 

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

 

# Model

print('==> Building model..')

net1 = CNNNet()

net2=Net()

net3=LeNet()

net4 = VGG('VGG16')

 

三、集成方法

模型集成方法采用类似投票机制的方法,具体代码如下:

#把3个网络模型放在一个列表里

mlps=[net1.to(device),net2.to(device),net3.to(device)]

 

optimizer=torch.optim.Adam([{"params":mlp.parameters()} for mlp in mlps], lr=LR)

 

loss_function=nn.CrossEntropyLoss()

 

for ep in range(EPOCHES):

    for ing,label in trainloader:

    img,label=img.to(device),label.to(device)

    optimizer.zero_grad()#10个网络消除梯度

        for mlp in mlps:

            mlp.train()

            out=mlp(img)

            loss=loss_function(out,label)

            loss.backward()#网络们获得梯度

        optimizer.step()

    

    pre=[]

    vote_correct=0

    mlps_correct=[0 for i in range(len(mlps))]

    for ing,label in testloader:

        img,label=img.to(device),label.to(device)

        for i, mlp in enumerate( mlps):

            mlp.eval()

            out=mlp(img)

            

            _, prediction=torch.max(out,1) #按行取最大值

            pre_num=prediction.cpu().nunpy()

            mlps_correct[i]+=(pre_nun==label.cpu().numpy()).sum()

            

            pre.append(pre_num)

        arr=np.array(pre)

        pre.clear()

        result=[Counter(arr[:,i]).most_comnon(1)[0][0] for i in range(BATCHSIZE)]

        vote_correct+=(result == label.cpu().nunpy()).sum()

    print("epoch:"+ str(ep)+"集成模型的正确率"+str(vote_correct/len(testloader)))

        

    for idx, coreect in enumerate( mlps_correct):

        print("模型"+str(idx)+"的正确率为:"+str(coreect/len(testloader)))

 

mlps=[net4.to(device)]

 

optimizer=torch.optim.Adam([{"params":mlp.parameters()} for mlp in mlps],lr=LR)

                             

loss_function=nn.CrossEntropyLoss()

                             

for ep in range(EPOCHES):

    for ing,label in trainloader:

        img,label=img.to(device),label.to(device)

        optimizer.zero_grad()#10个网络消除梯府

        for mlp in mlps:

            mlp.train()

            out=mlp(img)

            1oss=1oss_function(out,label)

            loss.backward()#网洛们获得梯窗

        optimizer.step()

        

    pre=[]

    vote_correct=0

    mlps_correct=[0 for i in range(len(mlps))]

    for img,label in testloader:

        img,label=img.to(device),label.to(device)

        for i,mlp in enumerate( mlps):

            mlp.eval()

            out=mlp(img)

            

            _,prediction=torch.max(out,1)#按行取最大值

            pre_nun=prediction.cpu().numpy()

            mlps_correct[i]+=(pre_nun==label.cpu().mumpy()).sum()

            

            pre.append(pre_num)

        arr=np.array(pre)

        pre.clear()

        result=[Counter(arr[:,i]).most_conmon(1)[0][0] for i in range(BATCHSIZE)]

        vote_correct+=(result == label.cpu().numpy()).sum()

    #print("epoch:"+ 5tr(ep)+"能成模型的正编率"+str(vote_correct/len(testloader)))

    

    for idx, coreect in enumerate(mlps_correct):

        print("VGG16模型迭"”+str(ep)+"次的正确率为: "+str(coreect/len(testloader)))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值