图像识别第十八课

YOLO系列

YOLO-V3

网络结构 更适合小目标检测

特征更细致 融入多持续特征图信息来预测不同规格物体

先验框更丰富 三种scale 每种三个规格 一共九种

softmax改进 预测多标签任务

多scale:为了能检测到不同大小的物体。

残差连接:为了更好的特征。

核心网络架构

先验框设计:9个

softmax层替代:物体检测任务中可能一个物体有多个标签

logistic激活函数来完成,这样就能预测每一个类别是/不是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值