图像识别第十九课

YOLO-V4

CV界劳模 细 单GPU训练

BOF: 只增加训练成本 但能显著提高精度 并不影响推理速度

数据增强:调整亮度、对比度、色调、随机缩放、 剪切、 翻转、旋转。

网络正则化的方法: Dropout、 Dropblock等。

类别不平衡,损失函数设计。

Mosaic data augmentation:

方法很简单 ,参考CutMix然后四张图像拼接成一张进行训练。

数据增强

 Random Erase: 用随机值或训练集的平均像素值替换图像的区域。

Hide and Seek:根据概率设置随机隐藏一些补丁。

Self-adversarial-training(SAT): 通过引入噪音点来增加游戏难度。

DropBlock:之前的dropout是随机选择点(b) , 现在吃掉一个区域。

 Label Smoothing: 神经网络最大的缺点: 自觉不错(过拟合) , 让它别太自信。

 Label Smoothing: 簇内更紧密 , 簇间更分离。

IOU损失

GIOU损失

DIOU损失

CIOU损失

公式:

损失函数必须要考虑的三个几何因素:重叠面积、中心点距离、长宽比。

DIOU- NMS:决定是否需要删除框

公式:

SOFT- NMS

Bag of apecials 

增加稍许推断代价 , 但可以提高模型精度的方法

 网络细节部分加入了很多改进 , 引入了各种能让特征提取更好的方法

注意力机制 , 网络细节设计 ,特征金字塔等 

SPPNet:SPP其实就是用最大池化来满足最终输入特征一致即可

CSPNet:

 每一个block按照特征图的channel维度拆分成两部分

一份正常走网络 , 另一份直接concat到这个block的输出

CBAM:

Spatial attention module:速度相对能更快一点

PAN:自底向上 底层信息更容易传到顶部

拼接

Mish:计算量效果增加 效果提升

 

 

 

 eliminate grid sensitivity

需要非常大的数值达到grid边界

整体网络架构

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值