- 博客(7)
- 收藏
- 关注
原创 scala基础语法
4. 字面量标识符:用反引号 定义的字符串,如x yield``,可在反引号间使用任何有效 Scala 标识符,如 Thread.yield`()` (`yield` 是 Scala 关键字,需用此方式调用 Thread 的 `yield` 方法)。2. 引用包:使用 import 关键字,如 import java.awt.Color(引入 Color)、import java.awt._(引入包内所有成员),import 语句可出现在任何地方,效果从开始延伸到语句块结束,可减少名称冲突。
2025-03-27 11:13:01
378
原创 U-net
3. U-net+++:通过不同的max pool整合低阶特征(如轮廓信息),上采样整合高阶特征(具有大感受野的全局信息),各层统一用卷积得到64个特征图,最终组合这些特征。○ 整体网络结构:注重特征融合,拼接更加全面,其思想与densenet一致,尽可能利用各种特征提升性能。○ 整体结构:采用编码解码过程,结构简单实用,应用广泛,最初用于医学方向,目前仍在该领域发挥重要作用。○ 主要网络结构:引入特征拼接操作,区别于以往的加法操作,通过这种结构有效完成图像分割任务。
2025-03-21 11:07:09
334
原创 【无标题】
➢从现在的角度来看,Batch Normalization已经成网络必备处理。➢经过Batch Normalization处理后的网络会提升2%的mAP。➢可能导致模型水土不服,V2训练时额外又进行了10次448*448的微调。➢V1训练时用的是224*224,测试时使用448*448。➢使用高分辨率分类器后,YOLOv2的mAP提升了约4%➢把检测问题转化成回归问题,一个CNN就搞定了!➢问题2:小物体检测效果一般,长宽比可选的但单一。➢网络的每一层的输入都做了归一化,收敛相对更容易。
2025-03-12 16:22:39
295
原创 py数据处理箱
transforms提供了对PIL Image对象和Tensor对象的常用操作。transforms提供了对PIL Image对象和Tensor对象的常用操作。2.DataLoader:可以批量处理。相关参数介绍如下所示。2.DataLoader:可以批量处理。1)对PIL Image的常见操作如下。Pytorch数据处理工具箱。
2025-02-26 20:12:15
179
原创 【无标题】
残差块有两种,一种是正常的模块方式,将输入与输出相加,然后应用激活函数ReLU。·另一种是为使输入与输出形状一致,需添加通过1×1卷积调整通道和分辨率。组合这两个模块得到现代经典RetNet18网络结构。使用nn.Sequential按层顺序构建模型。使用nn.Sequential按层顺序构建模型。使用nn.Sequential按层顺序构建模型。继承nn.Module基类并应用模型容器构建模型。继承nn.Module基类并应用模型容器构建模型。继承nn.Module基类构建模型。1.加载预处理数据集。
2025-02-25 18:47:03
184
原创 Pytorch神经网络工具箱
➢nn.functional中的函数,写法一般为nn.funtional.xxx,如nn.funtional.linear、nn.funtional.conv2d、nn.funtional.cross_entropy等。➢继承nn.Module基类构建模型,又使用相关模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict等)进行封装。➢nn.Module,写法一般为nn.Xxx,如nn.Linear、nn.Conv2d、nn.CrossEntropyLoss等。
2025-02-24 16:39:00
220
原创 卷积神经网络2
通过构建具有一定“深度”的模型,可以让模型来自动学习好的特征表示(从底层特征,到中层特征,再到高层特征),从而最终提升预测或识别的准确性。表示学习:如果有一种算法可以自动地学习出有效的特征,并提高最终机器学习模型的性能,那么这种学习就可以叫作表示学习。• AlexNet的架构与LeNet相似,但使⽤了更多的卷积层和更多的参数来拟合大规模的ImageNet数据集。不同次数的重复VGG块,可获得不同的架构,例如VGG-16,VGG-19,......· 浅层卷积核提取:边缘、颜色、斑块等底层像素特征。
2025-02-21 11:20:46
827
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人