在医疗行业中,生成式AI正在以前所未有的速度重塑着行业格局。从优化诊断精度到加速药物研发,从提升患者体验到减轻医护人员的行政负担,这项技术正为医疗服务带来颠覆性改变。麦肯锡研究指出,生成式AI有望大幅提升医疗效率和精准性,世界经济论坛(达沃斯论坛)的报告则强调,它在医学影像分析、个性化治疗和患者支持系统中展现出强大潜力。随着这一趋势的发展,医疗机构和企业如何更好地将生成式AI技术融入实际场景,成为行业焦点。本文将继续结合应用案例,聚焦医疗行业场景,深入探讨生成式AI如何助力医疗行业在服务、管理与创新中实现全面升级。
AI在医疗行业的应用体验
让我们设想医药代表小赵使用AI智能助理的一天。
今天是公司推出新药X后的第一个工作日,作为一名医药代表,小赵需要即刻开展客户拜访和市场拓展工作。
上午:快速开展一天工作
这是一份精炼的材料,用15分钟阅读后,小赵对新药了然于心,还生成了一份简洁的PPT,准备后续客户沟通使用。
下午:精心准备客户拜访
在上午完成了一系列的学习和培训工作后,小赵需要立刻投入到下午的拜访工作中,他打开智能助手,开始做准备。
小赵通过直接对话智能助手,快速掌握了拜访医生的具体需求,并借助个性化材料进行精心准备,极大地提升了下午拜访工作的专业性与效率。
小赵这一天的工作是生成式AI助力提效的一个典型案例。有了AI智能助理的支持,数据整合与知识生成得以无缝衔接,助力医药代表们迅速掌握药品知识,高效应对客户推广事宜。通过直接对话AI助理,医药代表们不再需要在系统或邮件中反复翻找,使日常事务安排和资料查找变得更加快捷,不仅提升了工作效率,还通过精准的信息传递赢得了医生的信任,为后续市场推广打下了坚实基础。
AI正在加速改变医疗保健
以上的案例,是生成式AI在医疗领域的其中一种应用场景。BCG研究表明,生成式AI正在快速融入医疗行业的多个细分领域,为各类场景带来颠覆性创新:针对医疗服务提供方,一些厂商正在开发从诊断到护理再到患者监测的解决方案,比如Paige.AI通过AI提升前列腺癌检测的准确性和效率,Doximity、Abridge和DeepScribe等公司正致力于文档自动化和理赔处理,极大提高了行政流程的效率。一些制药公司也正在训练AI模型,以加速基因组学、化学、生物学和分子动力学领域的药物发现和研究。Syntegra 和谷歌的 EHR-Safe 正在创建机器学习模型,帮助公共卫生项目作出更明智的决策。生成式AI还可能进一步推动实时监测与数据分析,在预防式护理和健康管理中发挥重要作用。
Guru Center
为医疗行业提供更安全高效的AI智能体
Guru Center(以下简称 GC),是R²AIN SUITE 推出的面向企业应用的AI 智能体,基于对医疗行业细分场景的深入分析,采用了RAG技术,并支持私有化部署,通过构建和优化本地知识库,增强智能体的准确性和针对性,帮助医疗行业从业者高效处理繁琐的行政事务和知识类文档,实现业务与AI的有机融合。
除了以上医药代表小赵的日常工作场景,GC还可以助力医疗行业的企业将繁杂的日常事务,如资料管理、审批流转、内部通知等,交由AI智能体高效处理,显著降低人工干预,提升运营效率。
此外,GC的本地知识库实现研究报告,包括文献、期刊、指南等知识类文件的高效处理,支持内容版本对比、自动更新以及基于上下文的智能推荐,帮助从业人员快速应对变化与创新需求。同时,GC的本地化部署,保障了严格的隐私管理,确保医药企业及医疗机构的数据安全,实现合规与高效的平衡。
通过先进的本地化AI技术和严格的数据隐私保护机制,GC致力于为医药行业企业和机构提供一个智能、高效且可信赖的解决方案,助力他们在数字化浪潮中稳步前行。