# 农村红白喜事操作指南APP开发方案
## 一、项目概述
开发一款专注于农村红白喜事(婚庆、丧葬等传统民俗活动)的操作指南APP,为农村居民提供从筹备到执行的全流程指导,结合现代科技与传统习俗,提升活动组织效率和质量。
## 二、技术架构
### 1. 整体架构
```
[前端] Flutter (跨平台移动端) + C++插件(图像处理/音视频)
[后端] Python Django (REST API) + C++微服务(复杂计算)
[数据库] PostgreSQL(关系型) + MongoDB(非结构化数据)
[AI服务] Python机器学习模型(习俗推荐/预算规划)
[云服务] 阿里云/腾讯云
```
### 2. 技术选型理由
- **Flutter**: 跨平台开发,性能接近原生
- **C++插件**: 处理图像识别(礼金数额识别)、音视频处理等高性能需求
- **Django**: 快速构建RESTful API,丰富的插件生态
- **PostgreSQL**: 支持复杂查询和地理空间数据
- **MongoDB**: 存储非结构化数据(如活动图片、视频)
## 三、核心功能模块
### 1. 红白喜事全流程指南
- **婚礼筹备**
- 传统习俗日历
- 迎亲路线规划
- 婚车装饰指南
- 婚宴菜单设计
- 伴手礼推荐
- **丧葬礼仪**
- 传统治丧流程
- 灵堂布置规范
- 悼词撰写模板
- 出殡时间选择
- 祭祀用品清单
### 2. 智能辅助工具
- **礼金管理**
- 手写礼金数额识别(C++图像处理)
- 礼金往来记录
- 自动计算收支
- 礼金感谢信模板
- **时间规划**
- 活动日程安排
- 任务提醒系统
- 人员分工管理
- 天气预警通知
- **预算规划**
- 传统项目价格参考
- 个性化预算模板
- 超支预警机制
- 多方案比价
### 3. 本地化服务对接
- **供应商推荐**
- 婚庆公司/丧葬服务评分
- 本地供应商数据库
- 用户评价系统
- 在线预约功能
- **民俗专家咨询**
- 在线问答系统
- 专家预约服务
- 电话咨询服务
- 常见问题库
### 4. 社区互助平台
- **经验分享**
- 成功案例展示
- 失败案例警示
- 用户故事分享
- 传统技艺传承
- **互助小组**
- 同村活动组队
- 志愿者招募
- 物资共享平台
- 经验交流论坛
### 5. 文化传承模块
- **传统知识库**
- 地方婚丧习俗百科
- 传统礼仪视频教程
- 古礼现代演绎
- 方言祝福语集
- **活动记录**
- 全程照片视频管理
- 活动精彩瞬间剪辑
- 多媒体纪念册生成
- 家族历史档案
## 四、技术实现细节
### 1. 礼金管理模块 (C++图像处理)
```cpp
// 礼金数额识别模块
#include <opencv2/opencv.hpp>
#include <tesseract/baseapi.h>
#include <leptonica/allheaders.h>
class RedEnvelopeRecognizer {
private:
tesseract::TessBaseAPI tess;
public:
RedEnvelopeRecognizer() {
// 初始化Tesseract OCR,设置中文识别
tess.Init(NULL, "chi_sim", tesseract::OEM_LSTM_ONLY);
tess.SetPageSegMode(tesseract::PSM_SINGLE_LINE);
}
// 识别礼金单上的金额
std::string recognizeAmount(const std::string& imagePath) {
// 读取图像
cv::Mat image = cv::imread(imagePath, cv::IMREAD_COLOR);
if (image.empty()) {
return "无法读取图片";
}
// 图像预处理
cv::Mat gray, blurred, thresh;
cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);
cv::GaussianBlur(gray, blurred, cv::Size(5, 5), 0);
cv::adaptiveThreshold(blurred, thresh, 255,
cv::ADAPTIVE_THRESH_GAUSSIAN_C,
cv::THRESH_BINARY_INV, 11, 2);
// 保存预处理后的图像用于调试
// cv::imwrite("processed.png", thresh);
// 设置图像数据到Tesseract
tess.SetImage(thresh.data, thresh.cols, thresh.rows, 1, thresh.step);
// 识别文本
char* outText = tess.GetUTF8Text();
std::string result(outText);
delete[] outText;
// 提取金额(简单实现,实际应用需要更复杂的逻辑)
size_t pos = result.find("元");
if (pos != std::string::npos) {
return result.substr(0, pos+1);
}
// 尝试查找数字+元模式
std::regex moneyRegex("(\\d+(\\.\\d+)?)元");
std::smatch match;
if (std::regex_search(result, match, moneyRegex)) {
return match[0];
}
return "未识别到金额";
}
};
```
### 2. 活动规划模块 (Python)
```python
# 活动规划与任务管理
from datetime import datetime, timedelta
from dateutil.relativedelta import relativedelta
import calendar
class EventPlanner:
def __init__(self):
self.tasks = []
self.milestones = {}
# 根据婚礼日期生成筹备计划
def generate_wedding_plan(self, wedding_date):
"""生成婚礼前3-6个月的筹备计划"""
plan = []
today = datetime.today()
# 确保婚礼日期在3个月之后
if wedding_date < today + relativedelta(months=3):
raise ValueError("婚礼日期应至少在3个月之后")
# 倒计时阶段划分
stages = [
{"name": "求婚/订婚", "weeks": -8},
{"name": "婚纱摄影", "weeks": -16},
{"name": "婚宴预订", "weeks": -20},
{"name": "婚礼请柬", "weeks": -18},
{"name": "婚礼策划", "weeks": -24},
{"name": "蜜月计划", "weeks": -22},
]
for stage in stages:
date = wedding_date + timedelta(weeks=stage["weeks"])
if date >= today:
days_left = (date - today).days
plan.append({
"stage": stage["name"],
"target_date": date.strftime("%Y-%m-%d"),
"days_left": days_left,
"status": "未开始" if days_left > 7 else ("进行中" if days_left > 0 else "已完成")
})
# 添加每周任务
current_week = (today - wedding_date).days // 7 if wedding_date > today else 0
for week in range(current_week, 25): # 计划25周内的任务
date = wedding_date - timedelta(weeks=week) if wedding_date > today else today + timedelta(weeks=week)
tasks = self._get_weekly_tasks(week, wedding_date)
plan.append({
"week": f"第{week}周",
"date": date.strftime("%Y-%m-%d"),
"tasks": tasks,
"milestone": self._get_milestone(week, wedding_date)
})
return plan
def _get_weekly_tasks(self, week_num, wedding_date):
"""根据周数返回该周应完成的任务"""
tasks = []
if week_num == 0:
tasks.append("确定婚礼日期和地点")
tasks.append("选择婚礼策划公司")
elif week_num == 1:
tasks.append("制定预算")
tasks.append("确定宾客名单")
# 更多周任务...
return tasks
def _get_milestone(self, week_num, wedding_date):
"""返回重要里程碑"""
if wedding_date - timedelta(weeks=week_num) <= datetime.today() + timedelta(days=7):
return "准备就绪!"
milestones = {
-24: "开始筹备",
-16: "婚纱摄影预订",
-8: "婚宴预订确认",
-4: "婚礼策划确认",
0: "婚礼当天"
}
closest = min(milestones.keys(), key=lambda x: abs(x-week_num))
return milestones[closest] if abs(closest-week_num) < 4 else None
# 根据丧葬习俗生成流程
def generate_funeral_plan(self, deceased_date=None):
"""生成传统丧葬流程"""
plan = []
today = datetime.today() if deceased_date is None else deceased_date
# 传统丧葬流程(简化版)
traditional_steps = [
{"name": "初终", "days_after": 0, "description": "老人去世后的初步处理"},
{"name": "报丧", "days_after": 1, "description": "通知亲友"},
{"name": "入殓", "days_after": 2, "description": "安置遗体"},
{"name": "守灵", "days_after": 3, "description": "家人守灵"},
{"name": "吊唁", "days_after": 4, "description": "亲友吊唁"},
{"name": "出殡", "days_after": 5, "description": "举行出殡仪式"},
{"name": "下葬", "days_after": 6, "description": "安葬逝者"},
{"name": "做七", "days_after": 7, "description": "传统祭祀"},
]
for step in traditional_steps:
date = today + timedelta(days=step["days_after"])
days_left = (date - today).days
status = "未开始"
if days_left <= 0:
status = "今日进行"
elif days_left <= 2:
status = "即将开始"
plan.append({
"step": step["name"],
"date": date.strftime("%Y-%m-%d"),
"description": step["description"],
"days_left": days_left,
"status": status
})
# 添加现代建议
plan.append({
"step": "现代建议",
"date": "",
"description": "联系当地殡仪馆安排火化事宜(如选择火化)",
"days_left": 0,
"status": "考虑中"
})
return plan
```
### 3. 社区互助模块 (WebSocket实现)
```cpp
// 社区互助WebSocket服务
#include <iostream>
#include <string>
#include <unordered_map>
#include <thread>
#include <mutex>
#include <websocketpp/config/asio_no_tls.hpp>
#include <websocketpp/server.hpp>
typedef websocketpp::server<websocketpp::config::asio> server;
using websocketpp::connection_hdl;
class CommunityHelperServer {
private:
server m_server;
std::unordered_map<connection_hdl, std::string, std::owner_less<connection_hdl>> m_connections;
std::mutex m_mutex;
// 处理新连接
void on_open(connection_hdl hdl) {
std::lock_guard<std::mutex> guard(m_mutex);
m_connections[hdl] = "anonymous";
std::cout << "New connection opened. Total connections: "
<< m_connections.size() << std::endl;
}
// 处理关闭连接
void on_close(connection_hdl hdl) {
std::lock_guard<std::mutex> guard(m_mutex);
m_connections.erase(hdl);
std::cout << "Connection closed. Total connections: "
<< m_connections.size() << std::endl;
}
// 处理消息
void on_message(connection_hdl hdl, server::message_ptr msg) {
std::lock_guard<std::mutex> guard(m_mutex);
try {
// 解析JSON消息
auto json_msg = nlohmann::json::parse(msg->get_payload());
std::string user_id = json_msg["user_id"];
std::string content = json_msg["content"];
std::string type = json_msg["type"];
// 更新连接信息
m_connections[hdl] = user_id;
// 广播消息给所有连接
for (auto& conn : m_connections) {
if (conn.first != hdl) { // 不发送给自己
m_server.send(conn.first, msg->get_payload(), msg->get_opcode());
}
}
// 处理特定类型的消息
if (type == "request_help") {
this->handle_help_request(user_id, content);
} else if (type == "offer_help") {
this->handle_help_offer(user_id, content);
}
} catch (const std::exception& e) {
std::cerr << "Error processing message: " << e.what() << std::endl;
}
}
// 处理求助请求
void handle_help_request(const std::string& user_id, const std::string& content) {
// 实际应用中应保存到数据库并通知志愿者
std::cout << "User " << user_id << " requested help: " << content << std::endl;
// 示例: 自动匹配志愿者(简化实现)
this->match_volunteer(user_id, content);
}
// 处理帮助提供
void handle_help_offer(const std::string& user_id, const std::string& content) {
// 实际应用中应保存到数据库
std::cout << "User " << user_id << " offered help: " << content << std::endl;
}
// 志愿者匹配(简化实现)
void match_volunteer(const std::string& requester_id, const std::string& request) {
// 这里应该查询志愿者数据库
// 简化实现: 直接返回模拟数据
std::cout << "Matching volunteer for request: " << request << std::endl;
// 模拟匹配成功
std::string volunteer_id = "volunteer_123";
std::string response = "已为您匹配志愿者: " + volunteer_id +
", 联系方式: 138****1234";
// 在实际应用中,这里应该通过WebSocket发送给请求者
std::cout << "Response to requester: " << response << std::endl;
}
public:
CommunityHelperServer() {
// 设置回调函数
m_server.init_asio();
m_server.set_open_handler(std::bind(&CommunityHelperServer::on_open, this, std::placeholders::_1));
m_server.set_close_handler(std::bind(&CommunityHelperServer::on_close, this, std::placeholders::_1));
m_server.set_message_handler(std::bind(&CommunityHelperServer::on_message, this, std::placeholders::_1, std::placeholders::_2));
}
void run(uint16_t port) {
m_server.listen(port);
m_server.start_accept();
m_server.run();
}
};
```
### 4. 文化传承模块 (Python机器学习)
```python
# 传统习俗推荐系统
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import joblib
class TraditionRecommender:
def __init__(self):
# 加载数据
self.traditions = pd.read_csv('traditions.csv')
self.vectorizer = TfidfVectorizer(stop_words='chinese')
# 训练模型
self._train_model()
def _train_model(self):
"""训练推荐模型"""
# 合并多列特征
tradition_text = self.traditions['name'] + ' ' + \
self.traditions['description'] + ' ' + \
self.traditions['steps'] + ' ' + \
self.traditions['materials']
# TF-IDF向量化
self.tfidf_matrix = self.vectorizer.fit_transform(tradition_text)
def recommend(self, user_interests, top_n=5):
"""
根据用户兴趣推荐传统习俗
:param user_interests: 用户兴趣描述
:param top_n: 推荐数量
:return: 推荐列表
"""
# 将用户兴趣转换为TF-IDF向量
user_vector = self.vectorizer.transform([user_interests])
# 计算相似度
similarities = cosine_similarity(user_vector, self.tfidf_matrix)[0]
# 获取最相似的习俗
top_indices = similarities.argsort()[::-1][:top_n]
recommendations = []
for idx in top_indices:
if similarities[idx] > 0: # 只返回有匹配的习俗
rec_score = similarities[idx] * 100
recommendations.append({
'tradition_id': self.traditions.iloc[idx]['id'],
'name': self.traditions.iloc[idx]['name'],
'score': round(rec_score, 2),
'category': self.traditions.iloc[idx]['category'],
'description': self.traditions.iloc[idx]['description']
})
# 按匹配度排序
recommendations.sort(key=lambda x: x['score'], reverse=True)
return recommendations
def get_similar_traditions(self, tradition_id, top_n=5):
"""
获取与指定习俗相似的其他习俗
:param tradition_id: 习俗ID
:param top_n: 推荐数量
:return: 相似习俗列表
"""
# 获取指定习俗的向量
tradition_idx = self.traditions[self.traditions['id'] == tradition_id].index
if len(tradition_idx) == 0:
return []
tradition_vector = self.tfidf_matrix[tradition_idx[0]]
# 计算相似度