Python, C ++开发农村红白喜事操作指南APP

# 农村红白喜事操作指南APP开发方案

## 一、项目概述

开发一款专注于农村红白喜事(婚庆、丧葬等传统民俗活动)的操作指南APP,为农村居民提供从筹备到执行的全流程指导,结合现代科技与传统习俗,提升活动组织效率和质量。

## 二、技术架构

### 1. 整体架构
```
[前端] Flutter (跨平台移动端) + C++插件(图像处理/音视频)
[后端] Python Django (REST API) + C++微服务(复杂计算)
[数据库] PostgreSQL(关系型) + MongoDB(非结构化数据)
[AI服务] Python机器学习模型(习俗推荐/预算规划)
[云服务] 阿里云/腾讯云
```

### 2. 技术选型理由
- **Flutter**: 跨平台开发,性能接近原生
- **C++插件**: 处理图像识别(礼金数额识别)、音视频处理等高性能需求
- **Django**: 快速构建RESTful API,丰富的插件生态
- **PostgreSQL**: 支持复杂查询和地理空间数据
- **MongoDB**: 存储非结构化数据(如活动图片、视频)

## 三、核心功能模块

### 1. 红白喜事全流程指南
- **婚礼筹备**
  - 传统习俗日历
  - 迎亲路线规划
  - 婚车装饰指南
  - 婚宴菜单设计
  - 伴手礼推荐

- **丧葬礼仪**
  - 传统治丧流程
  - 灵堂布置规范
  - 悼词撰写模板
  - 出殡时间选择
  - 祭祀用品清单

### 2. 智能辅助工具
- **礼金管理**
  - 手写礼金数额识别(C++图像处理)
  - 礼金往来记录
  - 自动计算收支
  - 礼金感谢信模板

- **时间规划**
  - 活动日程安排
  - 任务提醒系统
  - 人员分工管理
  - 天气预警通知

- **预算规划**
  - 传统项目价格参考
  - 个性化预算模板
  - 超支预警机制
  - 多方案比价

### 3. 本地化服务对接
- **供应商推荐**
  - 婚庆公司/丧葬服务评分
  - 本地供应商数据库
  - 用户评价系统
  - 在线预约功能

- **民俗专家咨询**
  - 在线问答系统
  - 专家预约服务
  - 电话咨询服务
  - 常见问题库

### 4. 社区互助平台
- **经验分享**
  - 成功案例展示
  - 失败案例警示
  - 用户故事分享
  - 传统技艺传承

- **互助小组**
  - 同村活动组队
  - 志愿者招募
  - 物资共享平台
  - 经验交流论坛

### 5. 文化传承模块
- **传统知识库**
  - 地方婚丧习俗百科
  - 传统礼仪视频教程
  - 古礼现代演绎
  - 方言祝福语集

- **活动记录**
  - 全程照片视频管理
  - 活动精彩瞬间剪辑
  - 多媒体纪念册生成
  - 家族历史档案

## 四、技术实现细节

### 1. 礼金管理模块 (C++图像处理)

```cpp
// 礼金数额识别模块
#include <opencv2/opencv.hpp>
#include <tesseract/baseapi.h>
#include <leptonica/allheaders.h>

class RedEnvelopeRecognizer {
private:
    tesseract::TessBaseAPI tess;
    
public:
    RedEnvelopeRecognizer() {
        // 初始化Tesseract OCR,设置中文识别
        tess.Init(NULL, "chi_sim", tesseract::OEM_LSTM_ONLY);
        tess.SetPageSegMode(tesseract::PSM_SINGLE_LINE);
    }
    
    // 识别礼金单上的金额
    std::string recognizeAmount(const std::string& imagePath) {
        // 读取图像
        cv::Mat image = cv::imread(imagePath, cv::IMREAD_COLOR);
        if (image.empty()) {
            return "无法读取图片";
        }
        
        // 图像预处理
        cv::Mat gray, blurred, thresh;
        cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);
        cv::GaussianBlur(gray, blurred, cv::Size(5, 5), 0);
        cv::adaptiveThreshold(blurred, thresh, 255, 
                             cv::ADAPTIVE_THRESH_GAUSSIAN_C, 
                             cv::THRESH_BINARY_INV, 11, 2);
        
        // 保存预处理后的图像用于调试
        // cv::imwrite("processed.png", thresh);
        
        // 设置图像数据到Tesseract
        tess.SetImage(thresh.data, thresh.cols, thresh.rows, 1, thresh.step);
        
        // 识别文本
        char* outText = tess.GetUTF8Text();
        std::string result(outText);
        delete[] outText;
        
        // 提取金额(简单实现,实际应用需要更复杂的逻辑)
        size_t pos = result.find("元");
        if (pos != std::string::npos) {
            return result.substr(0, pos+1);
        }
        
        // 尝试查找数字+元模式
        std::regex moneyRegex("(\\d+(\\.\\d+)?)元");
        std::smatch match;
        if (std::regex_search(result, match, moneyRegex)) {
            return match[0];
        }
        
        return "未识别到金额";
    }
};
```

### 2. 活动规划模块 (Python)

```python
# 活动规划与任务管理
from datetime import datetime, timedelta
from dateutil.relativedelta import relativedelta
import calendar

class EventPlanner:
    def __init__(self):
        self.tasks = []
        self.milestones = {}
    
    # 根据婚礼日期生成筹备计划
    def generate_wedding_plan(self, wedding_date):
        """生成婚礼前3-6个月的筹备计划"""
        plan = []
        today = datetime.today()
        
        # 确保婚礼日期在3个月之后
        if wedding_date < today + relativedelta(months=3):
            raise ValueError("婚礼日期应至少在3个月之后")
        
        # 倒计时阶段划分
        stages = [
            {"name": "求婚/订婚", "weeks": -8},
            {"name": "婚纱摄影", "weeks": -16},
            {"name": "婚宴预订", "weeks": -20},
            {"name": "婚礼请柬", "weeks": -18},
            {"name": "婚礼策划", "weeks": -24},
            {"name": "蜜月计划", "weeks": -22},
        ]
        
        for stage in stages:
            date = wedding_date + timedelta(weeks=stage["weeks"])
            if date >= today:
                days_left = (date - today).days
                plan.append({
                    "stage": stage["name"],
                    "target_date": date.strftime("%Y-%m-%d"),
                    "days_left": days_left,
                    "status": "未开始" if days_left > 7 else ("进行中" if days_left > 0 else "已完成")
                })
        
        # 添加每周任务
        current_week = (today - wedding_date).days // 7 if wedding_date > today else 0
        for week in range(current_week, 25):  # 计划25周内的任务
            date = wedding_date - timedelta(weeks=week) if wedding_date > today else today + timedelta(weeks=week)
            tasks = self._get_weekly_tasks(week, wedding_date)
            plan.append({
                "week": f"第{week}周",
                "date": date.strftime("%Y-%m-%d"),
                "tasks": tasks,
                "milestone": self._get_milestone(week, wedding_date)
            })
        
        return plan
    
    def _get_weekly_tasks(self, week_num, wedding_date):
        """根据周数返回该周应完成的任务"""
        tasks = []
        if week_num == 0:
            tasks.append("确定婚礼日期和地点")
            tasks.append("选择婚礼策划公司")
        elif week_num == 1:
            tasks.append("制定预算")
            tasks.append("确定宾客名单")
        # 更多周任务...
        return tasks
    
    def _get_milestone(self, week_num, wedding_date):
        """返回重要里程碑"""
        if wedding_date - timedelta(weeks=week_num) <= datetime.today() + timedelta(days=7):
            return "准备就绪!"
        milestones = {
            -24: "开始筹备",
            -16: "婚纱摄影预订",
            -8: "婚宴预订确认",
            -4: "婚礼策划确认",
            0: "婚礼当天"
        }
        closest = min(milestones.keys(), key=lambda x: abs(x-week_num))
        return milestones[closest] if abs(closest-week_num) < 4 else None

    # 根据丧葬习俗生成流程
    def generate_funeral_plan(self, deceased_date=None):
        """生成传统丧葬流程"""
        plan = []
        today = datetime.today() if deceased_date is None else deceased_date
        
        # 传统丧葬流程(简化版)
        traditional_steps = [
            {"name": "初终", "days_after": 0, "description": "老人去世后的初步处理"},
            {"name": "报丧", "days_after": 1, "description": "通知亲友"},
            {"name": "入殓", "days_after": 2, "description": "安置遗体"},
            {"name": "守灵", "days_after": 3, "description": "家人守灵"},
            {"name": "吊唁", "days_after": 4, "description": "亲友吊唁"},
            {"name": "出殡", "days_after": 5, "description": "举行出殡仪式"},
            {"name": "下葬", "days_after": 6, "description": "安葬逝者"},
            {"name": "做七", "days_after": 7, "description": "传统祭祀"},
        ]
        
        for step in traditional_steps:
            date = today + timedelta(days=step["days_after"])
            days_left = (date - today).days
            status = "未开始"
            if days_left <= 0:
                status = "今日进行"
            elif days_left <= 2:
                status = "即将开始"
            
            plan.append({
                "step": step["name"],
                "date": date.strftime("%Y-%m-%d"),
                "description": step["description"],
                "days_left": days_left,
                "status": status
            })
        
        # 添加现代建议
        plan.append({
            "step": "现代建议",
            "date": "",
            "description": "联系当地殡仪馆安排火化事宜(如选择火化)",
            "days_left": 0,
            "status": "考虑中"
        })
        
        return plan
```

### 3. 社区互助模块 (WebSocket实现)

```cpp
// 社区互助WebSocket服务
#include <iostream>
#include <string>
#include <unordered_map>
#include <thread>
#include <mutex>
#include <websocketpp/config/asio_no_tls.hpp>
#include <websocketpp/server.hpp>

typedef websocketpp::server<websocketpp::config::asio> server;
using websocketpp::connection_hdl;

class CommunityHelperServer {
private:
    server m_server;
    std::unordered_map<connection_hdl, std::string, std::owner_less<connection_hdl>> m_connections;
    std::mutex m_mutex;
    
    // 处理新连接
    void on_open(connection_hdl hdl) {
        std::lock_guard<std::mutex> guard(m_mutex);
        m_connections[hdl] = "anonymous";
        std::cout << "New connection opened. Total connections: " 
                  << m_connections.size() << std::endl;
    }
    
    // 处理关闭连接
    void on_close(connection_hdl hdl) {
        std::lock_guard<std::mutex> guard(m_mutex);
        m_connections.erase(hdl);
        std::cout << "Connection closed. Total connections: " 
                  << m_connections.size() << std::endl;
    }
    
    // 处理消息
    void on_message(connection_hdl hdl, server::message_ptr msg) {
        std::lock_guard<std::mutex> guard(m_mutex);
        
        try {
            // 解析JSON消息
            auto json_msg = nlohmann::json::parse(msg->get_payload());
            std::string user_id = json_msg["user_id"];
            std::string content = json_msg["content"];
            std::string type = json_msg["type"];
            
            // 更新连接信息
            m_connections[hdl] = user_id;
            
            // 广播消息给所有连接
            for (auto& conn : m_connections) {
                if (conn.first != hdl) {  // 不发送给自己
                    m_server.send(conn.first, msg->get_payload(), msg->get_opcode());
                }
            }
            
            // 处理特定类型的消息
            if (type == "request_help") {
                this->handle_help_request(user_id, content);
            } else if (type == "offer_help") {
                this->handle_help_offer(user_id, content);
            }
            
        } catch (const std::exception& e) {
            std::cerr << "Error processing message: " << e.what() << std::endl;
        }
    }
    
    // 处理求助请求
    void handle_help_request(const std::string& user_id, const std::string& content) {
        // 实际应用中应保存到数据库并通知志愿者
        std::cout << "User " << user_id << " requested help: " << content << std::endl;
        
        // 示例: 自动匹配志愿者(简化实现)
        this->match_volunteer(user_id, content);
    }
    
    // 处理帮助提供
    void handle_help_offer(const std::string& user_id, const std::string& content) {
        // 实际应用中应保存到数据库
        std::cout << "User " << user_id << " offered help: " << content << std::endl;
    }
    
    // 志愿者匹配(简化实现)
    void match_volunteer(const std::string& requester_id, const std::string& request) {
        // 这里应该查询志愿者数据库
        // 简化实现: 直接返回模拟数据
        std::cout << "Matching volunteer for request: " << request << std::endl;
        
        // 模拟匹配成功
        std::string volunteer_id = "volunteer_123";
        std::string response = "已为您匹配志愿者: " + volunteer_id + 
                              ", 联系方式: 138****1234";
        
        // 在实际应用中,这里应该通过WebSocket发送给请求者
        std::cout << "Response to requester: " << response << std::endl;
    }
    
public:
    CommunityHelperServer() {
        // 设置回调函数
        m_server.init_asio();
        m_server.set_open_handler(std::bind(&CommunityHelperServer::on_open, this, std::placeholders::_1));
        m_server.set_close_handler(std::bind(&CommunityHelperServer::on_close, this, std::placeholders::_1));
        m_server.set_message_handler(std::bind(&CommunityHelperServer::on_message, this, std::placeholders::_1, std::placeholders::_2));
    }
    
    void run(uint16_t port) {
        m_server.listen(port);
        m_server.start_accept();
        m_server.run();
    }
};
```

### 4. 文化传承模块 (Python机器学习)

```python
# 传统习俗推荐系统
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import joblib

class TraditionRecommender:
    def __init__(self):
        # 加载数据
        self.traditions = pd.read_csv('traditions.csv')
        self.vectorizer = TfidfVectorizer(stop_words='chinese')
        
        # 训练模型
        self._train_model()
    
    def _train_model(self):
        """训练推荐模型"""
        # 合并多列特征
        tradition_text = self.traditions['name'] + ' ' + \
                        self.traditions['description'] + ' ' + \
                        self.traditions['steps'] + ' ' + \
                        self.traditions['materials']
        
        # TF-IDF向量化
        self.tfidf_matrix = self.vectorizer.fit_transform(tradition_text)
    
    def recommend(self, user_interests, top_n=5):
        """
        根据用户兴趣推荐传统习俗
        :param user_interests: 用户兴趣描述
        :param top_n: 推荐数量
        :return: 推荐列表
        """
        # 将用户兴趣转换为TF-IDF向量
        user_vector = self.vectorizer.transform([user_interests])
        
        # 计算相似度
        similarities = cosine_similarity(user_vector, self.tfidf_matrix)[0]
        
        # 获取最相似的习俗
        top_indices = similarities.argsort()[::-1][:top_n]
        recommendations = []
        
        for idx in top_indices:
            if similarities[idx] > 0:  # 只返回有匹配的习俗
                rec_score = similarities[idx] * 100
                recommendations.append({
                    'tradition_id': self.traditions.iloc[idx]['id'],
                    'name': self.traditions.iloc[idx]['name'],
                    'score': round(rec_score, 2),
                    'category': self.traditions.iloc[idx]['category'],
                    'description': self.traditions.iloc[idx]['description']
                })
        
        # 按匹配度排序
        recommendations.sort(key=lambda x: x['score'], reverse=True)
        return recommendations
    
    def get_similar_traditions(self, tradition_id, top_n=5):
        """
        获取与指定习俗相似的其他习俗
        :param tradition_id: 习俗ID
        :param top_n: 推荐数量
        :return: 相似习俗列表
        """
        # 获取指定习俗的向量
        tradition_idx = self.traditions[self.traditions['id'] == tradition_id].index
        if len(tradition_idx) == 0:
            return []
        
        tradition_vector = self.tfidf_matrix[tradition_idx[0]]
        
        # 计算相似度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值