以下是结合Python与Go语言开发个人能力精细化评估APP的技术方案,重点突出多维度评估模型与高并发处理能力:
---
### **一、项目目标**
构建支持多维度能力评估(专业技能/软技能/认知水平)的智能化平台,提供个性化发展建议、竞争力对标分析及动态成长轨迹跟踪。
---
### **二、技术选型与角色分工**
| 技术组件 | 应用场景 | 优势 |
|----------------|-----------------------------------|---------------------------------------|
| **Go语言** | 用户服务/评估流程控制/高并发API | 轻量级协程处理万人同时测评 |
| **Python** | 能力模型训练/自然语言处理/可视化 | 丰富的AI库(NLTK/TensorFlow) |
| **Flutter** | 跨平台前端(移动+Web) | 高度定制化测评界面 |
| **Neo4j** | 能力关联图谱存储 | 高效处理复杂关系网络 |
| **Redis** | 实时排名缓存/临时评估数据 | 毫秒级响应排行榜更新 |
---
### **三、核心功能模块**
#### 1. **动态评估引擎(Python核心)**
```python
# 能力雷达图量化模型
def competency_radar(skills: dict, weights: dict) -> dict:
import numpy as np
categories = ['逻辑思维', '沟通能力', '技术深度', '团队协作']
scores = {cat: np.average([skills[s] for s in skills if cat in s],
weights=weights.get(cat, 1))