Python, C ++开发中医养生与药房APP

以下是针对中医养生与药房APP的混合开发方案(Python + C),结合健康管理特性与高性能需求:

---

 一、技术选型对比
 模块  技术选型  说明 

 核心业务逻辑  Python (Django/DRF)  快速开发健康管理API 
 高性能库存管理  C语言 (Redis + 自研算法)  药品库存实时计算与高并发处理 
 智能养生推荐  Python (TensorFlow Lite)  基于体质的个性化方案推荐 
 移动端交互  Flutter (Dart)  跨平台移动端开发 
 数据持久化  PostgreSQL + Redis  结构化数据存储 + 高频访问缓存 
 设备通信  C语言 (MQTT协议)  可穿戴设备数据采集 

---

 二、系统架构设计
mermaid
graph TD
    A移动端 -->HTTP/WebSocket BPython业务服务
    B --> C{业务路由}
    C --> D中医知识图谱
    C --> EC语言库存引擎
    C --> F推荐算法服务
    D --> GPostgreSQL
    E --> HRedis集群
    F --> I特征数据库

---

 三、核心功能实现

 1. C语言库存引擎(高并发处理)
c
// pharmacy_engine.c
include <pthread.h>
include <hiredis/hiredis.h>

define MAX_THREADS 32

typedef struct {
    char medicine_id16;
    int stock;
    double price;
} Medicine;

pthread_mutex_t stock_mutex = PTHREAD_MUTEX_INITIALIZER;

void* process_order(void* arg) {
    Medicine* med = (Medicine*)arg;
    
    pthread_mutex_lock(&stock_mutex);
    if (med->stock > 0) {
        med->stock--;
        redisCommand(conn, 
            "HINCRBY stock:%s quantity -1", 
            med->medicine_id);
    }
    pthread_mutex_unlock(&stock_mutex);
    
    return NULL;
}

int main() {
    // 初始化Redis连接
    // 启动多线程处理订单...
}

 2. Python体质分析API
python
 health_api/views.py
from rest_framework.views import APIView
from .algorithms import calculate_constitution

class ConstitutionAnalysis(APIView):
    def post(self, request):
        user_data = request.data
        
         调用C扩展模块进行高效计算
        from cffi import FFI
        ffi = FFI()
        lib = ffi.dlopen("./libconstitution.so")
        score = lib.calculate_score(
            ffi.new("double", user_data'symptoms'),
            user_data'age'
        )
        
        return Response({
            "constitution_type": "阴虚体质" if score > 70 else "湿热体质",
            "recommendations": get_health_plan(score)
        })

 3. 中药配伍禁忌校验(C扩展)
c
// compatibility_check.c
include <Python.h>

static PyObject* check_formula(PyObject* self, PyObject* args) {
    const char* formula;
    if (!PyArg_ParseTuple(args, "s", &formula)) return NULL;
    
    // 配伍禁忌规则库
    const char* forbidden_pairs2 = {
        {"附子", "半夏"}, {"甘草", "甘遂"}
    };
    
    for (int i=0; i<sizeof(forbidden_pairs)/sizeof(*forbidden_pairs); i++) {
        if (strstr(formula, forbidden_pairsi0) &&
            strstr(formula, forbidden_pairsi1)) {
            return Py_BuildValue("s", "存在配伍禁忌");
        }
    }
    return Py_BuildValue("s", "配方安全");
}

static PyMethodDef methods = {
    {"check_formula", check_formula, METH_VARARGS, "Check formula safety"},
    {NULL, NULL, 0, NULL}
};

static struct PyModuleDef module = {
    PyModuleDef_HEAD_INIT,
    "compatibility",
    NULL,
    -1,
    methods
};

PyMODINIT_FUNC PyInit_compatibility(void) {
    return PyModule_Create(&module);
}

---

 四、关键技术实现

 1. 中西医知识图谱构建
python
 knowledge_graph.py
from py2neo import Graph
import jieba.analyse

class TCMGraph:
    def __init__(self):
        self.graph = Graph("bolt://localhost:7687")
        
    def build_from_text(self, text):
        keywords = jieba.analyse.extract_tags(text, topK=20)
        for kw in keywords:
            self.graph.merge(kw, "Keyword", "name")
            
         构建症状-中药关系
        for rel in extract_relations(text):
            self.graph.create(rel)

 2. 药材库存预警系统(C+Redis)
c
// inventory_alert.c
include <hiredis/hiredis.h>

void check_inventory() {
    redisContext* conn = redisConnect("127.0.0.1", 6379);
    redisReply* reply = redisCommand(conn, 
        "ZRANGEBYSCORE low_stock 0 -1 WITHSCORES");
    
    for (size_t i=0; i<reply->elements; i+=2) {
        if (atoi(reply->elementi+1->str) < 10) {
            send_alert_email(reply->elementi->str);
        }
    }
    freeReplyObject(reply);
}

---

 五、健康算法示例

 1. 药膳推荐算法(Python)
python
def recommend_diet(user):
     基于五行理论的推荐算法
    element = user.constitution_element()
    season = datetime.now().month % 12 + 1
    
    return DietPlan.objects.filter(
        elements__contains=element,
        season=season
    ).annotate(
        compatibility=TrigramSimilarity('herbs', user.allergies)
    ).order_by('-compatibility')

 2. 脉象识别预处理(C语言加速)
c
// pulse_analysis.c
include <fftw3.h>

float* preprocess_pulse(float* raw_data, int length) {
    fftwf_plan p = fftwf_plan_rfft_1d(length, raw_data, NULL, FFTW_ESTIMATE);
    
    // 信号滤波处理
    apply_bandpass_filter(raw_data, length);
    
    fftwf_execute(p);
    fftwf_destroy_plan(p);
    
    return normalized_spectrum;
}

---

 六、部署架构建议
生产环境架构:
CDN -> 移动端 -> API网关 -> Python微服务 <-> C语言服务集群
                           ↑
                   PostgreSQL集群
                           ↑
                   Redis Sentinel
                           ↑
           医疗设备网关 <- MQTT Broker

---

 七、开发注意事项
1. 医疗合规性:符合《个人信息保护法》和HIPAA数据规范
2. 剂量计算:中药配方必须实现双重校验机制
3. 实时性要求:库存更新使用Redis Lua脚本保证原子性
4. 跨平台适配:C模块需编译多平台版本(Android/iOS/ARM)
5. 容灾方案:实现中药库存的异地多活部署

---

 八、扩展方向
1. 集成AR技术实现穴位可视化指导
2. 开发基于NLP的智能问诊系统
3. 对接可穿戴设备的健康数据监测
4. 构建中药材区块链溯源系统

该方案充分发挥Python在AI/数据分析方面的优势,同时利用C语言处理高频交易和复杂计算场景,适合日处理量10万级的中医健康管理场景。实际部署时需要特别注意医疗数据的安全合规性。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值