以下是针对中医养生与药房APP的混合开发方案(Python + C),结合健康管理特性与高性能需求:
---
一、技术选型对比
模块 技术选型 说明
核心业务逻辑 Python (Django/DRF) 快速开发健康管理API
高性能库存管理 C语言 (Redis + 自研算法) 药品库存实时计算与高并发处理
智能养生推荐 Python (TensorFlow Lite) 基于体质的个性化方案推荐
移动端交互 Flutter (Dart) 跨平台移动端开发
数据持久化 PostgreSQL + Redis 结构化数据存储 + 高频访问缓存
设备通信 C语言 (MQTT协议) 可穿戴设备数据采集
---
二、系统架构设计
mermaid
graph TD
A移动端 -->HTTP/WebSocket BPython业务服务
B --> C{业务路由}
C --> D中医知识图谱
C --> EC语言库存引擎
C --> F推荐算法服务
D --> GPostgreSQL
E --> HRedis集群
F --> I特征数据库
---
三、核心功能实现
1. C语言库存引擎(高并发处理)
c
// pharmacy_engine.c
include <pthread.h>
include <hiredis/hiredis.h>
define MAX_THREADS 32
typedef struct {
char medicine_id16;
int stock;
double price;
} Medicine;
pthread_mutex_t stock_mutex = PTHREAD_MUTEX_INITIALIZER;
void* process_order(void* arg) {
Medicine* med = (Medicine*)arg;
pthread_mutex_lock(&stock_mutex);
if (med->stock > 0) {
med->stock--;
redisCommand(conn,
"HINCRBY stock:%s quantity -1",
med->medicine_id);
}
pthread_mutex_unlock(&stock_mutex);
return NULL;
}
int main() {
// 初始化Redis连接
// 启动多线程处理订单...
}
2. Python体质分析API
python
health_api/views.py
from rest_framework.views import APIView
from .algorithms import calculate_constitution
class ConstitutionAnalysis(APIView):
def post(self, request):
user_data = request.data
调用C扩展模块进行高效计算
from cffi import FFI
ffi = FFI()
lib = ffi.dlopen("./libconstitution.so")
score = lib.calculate_score(
ffi.new("double", user_data'symptoms'),
user_data'age'
)
return Response({
"constitution_type": "阴虚体质" if score > 70 else "湿热体质",
"recommendations": get_health_plan(score)
})
3. 中药配伍禁忌校验(C扩展)
c
// compatibility_check.c
include <Python.h>
static PyObject* check_formula(PyObject* self, PyObject* args) {
const char* formula;
if (!PyArg_ParseTuple(args, "s", &formula)) return NULL;
// 配伍禁忌规则库
const char* forbidden_pairs2 = {
{"附子", "半夏"}, {"甘草", "甘遂"}
};
for (int i=0; i<sizeof(forbidden_pairs)/sizeof(*forbidden_pairs); i++) {
if (strstr(formula, forbidden_pairsi0) &&
strstr(formula, forbidden_pairsi1)) {
return Py_BuildValue("s", "存在配伍禁忌");
}
}
return Py_BuildValue("s", "配方安全");
}
static PyMethodDef methods = {
{"check_formula", check_formula, METH_VARARGS, "Check formula safety"},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef module = {
PyModuleDef_HEAD_INIT,
"compatibility",
NULL,
-1,
methods
};
PyMODINIT_FUNC PyInit_compatibility(void) {
return PyModule_Create(&module);
}
---
四、关键技术实现
1. 中西医知识图谱构建
python
knowledge_graph.py
from py2neo import Graph
import jieba.analyse
class TCMGraph:
def __init__(self):
self.graph = Graph("bolt://localhost:7687")
def build_from_text(self, text):
keywords = jieba.analyse.extract_tags(text, topK=20)
for kw in keywords:
self.graph.merge(kw, "Keyword", "name")
构建症状-中药关系
for rel in extract_relations(text):
self.graph.create(rel)
2. 药材库存预警系统(C+Redis)
c
// inventory_alert.c
include <hiredis/hiredis.h>
void check_inventory() {
redisContext* conn = redisConnect("127.0.0.1", 6379);
redisReply* reply = redisCommand(conn,
"ZRANGEBYSCORE low_stock 0 -1 WITHSCORES");
for (size_t i=0; i<reply->elements; i+=2) {
if (atoi(reply->elementi+1->str) < 10) {
send_alert_email(reply->elementi->str);
}
}
freeReplyObject(reply);
}
---
五、健康算法示例
1. 药膳推荐算法(Python)
python
def recommend_diet(user):
基于五行理论的推荐算法
element = user.constitution_element()
season = datetime.now().month % 12 + 1
return DietPlan.objects.filter(
elements__contains=element,
season=season
).annotate(
compatibility=TrigramSimilarity('herbs', user.allergies)
).order_by('-compatibility')
2. 脉象识别预处理(C语言加速)
c
// pulse_analysis.c
include <fftw3.h>
float* preprocess_pulse(float* raw_data, int length) {
fftwf_plan p = fftwf_plan_rfft_1d(length, raw_data, NULL, FFTW_ESTIMATE);
// 信号滤波处理
apply_bandpass_filter(raw_data, length);
fftwf_execute(p);
fftwf_destroy_plan(p);
return normalized_spectrum;
}
---
六、部署架构建议
生产环境架构:
CDN -> 移动端 -> API网关 -> Python微服务 <-> C语言服务集群
↑
PostgreSQL集群
↑
Redis Sentinel
↑
医疗设备网关 <- MQTT Broker
---
七、开发注意事项
1. 医疗合规性:符合《个人信息保护法》和HIPAA数据规范
2. 剂量计算:中药配方必须实现双重校验机制
3. 实时性要求:库存更新使用Redis Lua脚本保证原子性
4. 跨平台适配:C模块需编译多平台版本(Android/iOS/ARM)
5. 容灾方案:实现中药库存的异地多活部署
---
八、扩展方向
1. 集成AR技术实现穴位可视化指导
2. 开发基于NLP的智能问诊系统
3. 对接可穿戴设备的健康数据监测
4. 构建中药材区块链溯源系统
该方案充分发挥Python在AI/数据分析方面的优势,同时利用C语言处理高频交易和复杂计算场景,适合日处理量10万级的中医健康管理场景。实际部署时需要特别注意医疗数据的安全合规性。