# Developing "Who is the Boss of the World" with Python, C++, and C
## System Architecture Overview
This geopolitical analytics platform combines:
- **Python** for data aggregation and visualization
- **C++** for high-performance graph algorithms
- **C** for low-level data processing
## Core Components
### 1. Power Relationship Analyzer (C++)
```cpp
// power_analyzer.cpp - Influence network analysis
#include <iostream>
#include <vector>
#include <map>
#include <algorithm>
#include <cmath>
#include <unordered_set>
#include <queue>
using namespace std;
class InfluenceNetwork {
private:
map<string, vector<pair<string, double>>> graph; // Adjacency list
map<string, double> node_weights;
public:
void add_relationship(const string& source, const string& target, double weight) {
graph[source].emplace_back(target, weight);
node_weights[source] = 1.0; // Default weight
node_weights[target] = 1.0;
}
map<string, double> calculate_pagerank(double damping=0.85, int iterations=100) {
map<string, double> ranks;
const double N = node_weights.size();
const double init_rank = 1.0 / N;
// Initialize ranks
for (const auto& node : node_weights) {
ranks[node.first] = init_rank;
}
// Power iteration
for (int i = 0; i < iterations; ++i) {
map<string, double> new_ranks;
double dangling_mass = 0.0;
// Calculate new ranks
for (const auto& node : graph) {
const string& u = node.first;
double outgoing_sum = 0.0;
for (const auto& edge : node.second) {
outgoing_sum += edge.second;
}
if (outgoing_sum == 0.0) {
dangling_mass += ranks[u];
continue;
}
for (const auto& edge : node.second) {
const string& v = edge.first;
double weight = edge.second;
new_ranks[v] += damping * ranks[u] * (weight / outgoing_sum);
}
}
// Handle dangling nodes
dangling_mass /= N;
for (const auto& node : node_weights) {
new_ranks[node.first] += (1.0 - damping) / N + damping * dangling_mass;
}
ranks = new_ranks;
}
return ranks;
}
vector<string> find_most_influential(int k=5) {
auto ranks = calculate_pagerank();
vector<pair<string, double>> ranked_nodes(ranks.begin(), ranks.end());
sort(ranked_nodes.begin(), ranked_nodes.end(),
[](const auto& a, const auto& b) { return a.second > b.second; });
vector<string> result;
for (int i = 0; i < min(k, (int)ranked_nodes.size()); ++i) {
result.push_back(ranked_nodes[i].first);
}
return result;
}
vector<vector<string>> detect_power_clusters(double threshold=0.5) {
// Community detection using Louvain method (simplified)
map<string, int> communities;
int community_id = 0;
for (const auto& node : graph) {
if (communities.find(node.first) == communities.end()) {
queue<string> q;
q.push(node.first);
communities[node.first] = community_id;
while (!q.empty()) {
string u = q.front();
q.pop();
for (const auto& edge : graph[u]) {
string v = edge.first;
double weight = edge.second;
if (weight >= threshold &&
communities.find(v) == communities.end()) {
communities[v] = community_id;
q.push(v);
}
}
}
++community_id;
}
}
// Organize by communities
vector<vector<string>> clusters(community_id);
for (const auto& entry : communities) {
clusters[entry.second].push_back(entry.first);
}
return clusters;
}
};
```
### 2. Data Preprocessor (C)
```c
// data_processor.c - Efficient data cleaning
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#define MAX_ENTITIES 10000
#define MAX_NAME_LEN 100
typedef struct {
char name[MAX_NAME_LEN];
double influence_score;
} Entity;
void clean_string(char *str) {
char *p = str;
char *q = str;
while (*p) {
if (isalpha(*p) || *p == ' ') {
*q++ = tolower(*p);
}
p++;
}
*q = '\0';
}
int process_csv(const char *filename, Entity *entities) {
FILE *file = fopen(filename, "r");
if (!file) return -1;
char line[1024];
int count = 0;
while (fgets(line, sizeof(line), file) {
char *name = strtok(line, ",");
char *score_str = strtok(NULL, ",");
if (name && score_str) {
clean_string(name);
strncpy(entities[count].name, name, MAX_NAME_LEN);
entities[count].influence_score = atof(score_str);
count++;
if (count >= MAX_ENTITIES) break;
}
}
fclose(file);
return count;
}
void normalize_scores(Entity *entities, int count) {
double max_score = 0.0;
// Find max score
for (int i = 0; i < count; i++) {
if (entities[i].influence_score > max_score) {
max_score = entities[i].influence_score;
}
}
// Normalize
if (max_score > 0) {
for (int i = 0; i < count; i++) {
entities[i].influence_score /= max_score;
}
}
}
```
### 3. Main Application (Python)
```python
# boss_app.py - Visualization and interface
from flask import Flask, request, jsonify, render_template
import subprocess
import json
from ctypes import CDLL, Structure, c_char, c_double, POINTER
import networkx as nx
import matplotlib.pyplot as plt
from io import BytesIO
import base64
app = Flask(__name__)
# Load C data processor
class Entity(Structure):
_fields_ = [
("name", c_char * 100),
("influence_score", c_double)
]
data_lib = CDLL('./data_processor.so')
data_lib.process_csv.argtypes = [c_char_p, POINTER(Entity)]
data_lib.process_csv.restype = c_int
data_lib.normalize_scores.argtypes = [POINTER(Entity), c_int]
# Initialize C++ analyzer
analyzer_process = subprocess.Popen(
['./power_analyzer'],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
text=True
)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/analyze', methods=['POST'])
def analyze_power():
# Process uploaded data
file = request.files['data']
entities = (Entity * 10000)()
count = data_lib.process_csv(file.filename.encode(), entities)
data_lib.normalize_scores(entities, count)
# Build relationships (simplified)
relationships = []
for i in range(min(count, 100)): # Limit for demo
for j in range(i+1, min(count, 100))):
if abs(entities[i].influence_score - entities[j].influence_score) < 0.3:
relationships.append(
f"{entities[i].name.decode()},{entities[j].name.decode()},"
f"{1.0 - abs(entities[i].influence_score - entities[j].influence_score)}"
)
# Send to C++ analyzer
analyzer_process.stdin.write(f"ANALYZE\n{count}\n")
for rel in relationships:
analyzer_process.stdin.write(f"{rel}\n")
analyzer_process.stdin.write("END_RELATIONS\n")
analyzer_process.stdin.flush()
# Get results
results = []
while True:
line = analyzer_process.stdout.readline().strip()
if line == "END_RESULTS":
break
results.append(json.loads(line))
# Generate visualization
G = nx.DiGraph()
for entity in results[0]['nodes']:
G.add_node(entity['name'], score=entity['score'])
for rel in results[1]['relationships']:
G.add_edge(rel['source'], rel['target'], weight=rel['weight'])
pos = nx.spring_layout(G)
plt.figure(figsize=(12, 12))
nx.draw_networkx_nodes(G, pos, node_size=[v['score']*1000 for v in G.nodes.values()])
nx.draw_networkx_edges(G, pos, width=[d['weight']*2 for u,v,d in G.edges(data=True)])
nx.draw_networkx_labels(G, pos, font_size=8)
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
return jsonify({
"top_influencers": results[0]['nodes'][:10],
"power_clusters": results[1]['clusters'],
"graph_image": base64.b64encode(buf.read()).decode('utf-8')
})
if __name__ == '__main__':
app.run(port=5000)
```
## Key Features
### 1. Power Network Analysis (C++)
- PageRank algorithm for influence measurement
- Community detection for power clusters
- Graph traversal for relationship mapping
### 2. Data Processing (C)
- High-speed CSV parsing
- Text normalization and cleaning
- Memory-efficient data structures
### 3. Interactive Visualization (Python)
- NetworkX for graph analysis
- Matplotlib for dynamic rendering
- Flask web interface
## Advanced Components
### 1. Temporal Influence Tracker (C++)
```cpp
// temporal_analyzer.cpp - Time-based power shifts
#include <map>
#include <vector>
#include <string>
#include <algorithm>
class TemporalAnalyzer {
private:
map<int, map<string, double>> timeline; // year -> entity -> score
public:
void add_year_data(int year, const map<string, double>& data) {
timeline[year] = data;
}
vector<pair<string, double>> get_top_entities(int year, int k=5) {
if (timeline.find(year) == timeline.end()) {
return {};
}
vector<pair<string, double>> entities(
timeline[year].begin(), timeline[year].end());
sort(entities.begin(), entities.end(),
[](const auto& a, const auto& b) { return a.second > b.second; });
if (k > entities.size()) k = entities.size();
return vector<pair<string, double>>(entities.begin(), entities.begin() + k);
}
map<string, vector<pair<int, double>>> get_entity_history(const string& entity) {
map<string, vector<pair<int, double>>> result;
for (const auto& year_entry : timeline) {
int year = year_entry.first;
const auto& data = year_entry.second;
if (data.find(entity) != data.end()) {
result[entity].emplace_back(year, data.at(entity));
}
}
return result;
}
vector<string> get_rising_powers(int start_year, int end_year, int k=5) {
map<string, double> growth_rates;
for (const auto& entity_entry : timeline[start_year]) {
const string& entity = entity_entry.first;
if (timeline[end_year].find(entity) != timeline[end_year].end()) {
double start_score = entity_entry.second;
double end_score = timeline[end_year].at(entity);
double growth = (end_score - start_score) / start_score;
growth_rates[entity] = growth;
}
}
vector<pair<string, double>> entities(
growth_rates.begin(), growth_rates.end());
sort(entities.begin(), entities.end(),
[](const auto& a, const auto& b) { return a.second > b.second; });
if (k > entities.size()) k = entities.size();
vector<string> result;
for (int i = 0; i < k; ++i) {
result.push_back(entities[i].first);
}
return result;
}
};
```
### 2. Geopolitical Event Correlator (Python)
```python
# event_correlator.py - News/event analysis
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
class EventAnalyzer:
def __init__(self):
self.vectorizer = TfidfVectorizer(stop_words='english', max_features=1000)
self.event_vectors = None
self.event_data = pd.DataFrame()
def load_events(self, filepath):
self.event_data = pd.read_csv(filepath)
self.event_vectors = self.vectorizer.fit_transform(self.event_data['description'])
def find_related_events(self, query, top_n=5):
query_vec = self.vectorizer.transform([query])
similarities = cosine_similarity(query_vec, self.event_vectors)
top_indices = similarities.argsort()[0][-top_n:][::-1]
return self.event_data.iloc[top_indices].to_dict('records')
def correlate_with_power(self, entity_name, power_data):
entity_events = self.event_data[
self.event_data['entities'].str.contains(entity_name, case=False)]
if len(entity_events) == 0:
return None
# Simple correlation analysis
merged = pd.merge(
entity_events,
power_data,
left_on='year',
right_on='year',
how='left'
)
return merged[['year', 'event_type', 'description', 'power_score']].to_dict('records')
```
## Integration Strategy
1. **Data Flow**:
```
Raw Data → C Processor → C++ Analyzer → Python Visualizer → Web Interface
```
2. **Performance Optimization**:
- C handles 1M+