Python, C, C ++ are used to develop the app “who is the boss of the world “

# Developing "Who is the Boss of the World" with Python, C++, and C

## System Architecture Overview

This geopolitical analytics platform combines:
- **Python** for data aggregation and visualization
- **C++** for high-performance graph algorithms
- **C** for low-level data processing

## Core Components

### 1. Power Relationship Analyzer (C++)
```cpp
// power_analyzer.cpp - Influence network analysis
#include <iostream>
#include <vector>
#include <map>
#include <algorithm>
#include <cmath>
#include <unordered_set>
#include <queue>

using namespace std;

class InfluenceNetwork {
private:
    map<string, vector<pair<string, double>>> graph; // Adjacency list
    map<string, double> node_weights;

public:
    void add_relationship(const string& source, const string& target, double weight) {
        graph[source].emplace_back(target, weight);
        node_weights[source] = 1.0; // Default weight
        node_weights[target] = 1.0;
    }

    map<string, double> calculate_pagerank(double damping=0.85, int iterations=100) {
        map<string, double> ranks;
        const double N = node_weights.size();
        const double init_rank = 1.0 / N;
        
        // Initialize ranks
        for (const auto& node : node_weights) {
            ranks[node.first] = init_rank;
        }

        // Power iteration
        for (int i = 0; i < iterations; ++i) {
            map<string, double> new_ranks;
            double dangling_mass = 0.0;

            // Calculate new ranks
            for (const auto& node : graph) {
                const string& u = node.first;
                double outgoing_sum = 0.0;
                for (const auto& edge : node.second) {
                    outgoing_sum += edge.second;
                }

                if (outgoing_sum == 0.0) {
                    dangling_mass += ranks[u];
                    continue;
                }

                for (const auto& edge : node.second) {
                    const string& v = edge.first;
                    double weight = edge.second;
                    new_ranks[v] += damping * ranks[u] * (weight / outgoing_sum);
                }
            }

            // Handle dangling nodes
            dangling_mass /= N;
            for (const auto& node : node_weights) {
                new_ranks[node.first] += (1.0 - damping) / N + damping * dangling_mass;
            }

            ranks = new_ranks;
        }

        return ranks;
    }

    vector<string> find_most_influential(int k=5) {
        auto ranks = calculate_pagerank();
        vector<pair<string, double>> ranked_nodes(ranks.begin(), ranks.end());
        
        sort(ranked_nodes.begin(), ranked_nodes.end(),
            [](const auto& a, const auto& b) { return a.second > b.second; });

        vector<string> result;
        for (int i = 0; i < min(k, (int)ranked_nodes.size()); ++i) {
            result.push_back(ranked_nodes[i].first);
        }
        return result;
    }

    vector<vector<string>> detect_power_clusters(double threshold=0.5) {
        // Community detection using Louvain method (simplified)
        map<string, int> communities;
        int community_id = 0;
        
        for (const auto& node : graph) {
            if (communities.find(node.first) == communities.end()) {
                queue<string> q;
                q.push(node.first);
                communities[node.first] = community_id;
                
                while (!q.empty()) {
                    string u = q.front();
                    q.pop();
                    
                    for (const auto& edge : graph[u]) {
                        string v = edge.first;
                        double weight = edge.second;
                        
                        if (weight >= threshold && 
                            communities.find(v) == communities.end()) {
                            communities[v] = community_id;
                            q.push(v);
                        }
                    }
                }
                
                ++community_id;
            }
        }
        
        // Organize by communities
        vector<vector<string>> clusters(community_id);
        for (const auto& entry : communities) {
            clusters[entry.second].push_back(entry.first);
        }
        
        return clusters;
    }
};
```

### 2. Data Preprocessor (C)
```c
// data_processor.c - Efficient data cleaning
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

#define MAX_ENTITIES 10000
#define MAX_NAME_LEN 100

typedef struct {
    char name[MAX_NAME_LEN];
    double influence_score;
} Entity;

void clean_string(char *str) {
    char *p = str;
    char *q = str;
    
    while (*p) {
        if (isalpha(*p) || *p == ' ') {
            *q++ = tolower(*p);
        }
        p++;
    }
    *q = '\0';
}

int process_csv(const char *filename, Entity *entities) {
    FILE *file = fopen(filename, "r");
    if (!file) return -1;
    
    char line[1024];
    int count = 0;
    
    while (fgets(line, sizeof(line), file) {
        char *name = strtok(line, ",");
        char *score_str = strtok(NULL, ",");
        
        if (name && score_str) {
            clean_string(name);
            strncpy(entities[count].name, name, MAX_NAME_LEN);
            entities[count].influence_score = atof(score_str);
            count++;
            
            if (count >= MAX_ENTITIES) break;
        }
    }
    
    fclose(file);
    return count;
}

void normalize_scores(Entity *entities, int count) {
    double max_score = 0.0;
    
    // Find max score
    for (int i = 0; i < count; i++) {
        if (entities[i].influence_score > max_score) {
            max_score = entities[i].influence_score;
        }
    }
    
    // Normalize
    if (max_score > 0) {
        for (int i = 0; i < count; i++) {
            entities[i].influence_score /= max_score;
        }
    }
}
```

### 3. Main Application (Python)
```python
# boss_app.py - Visualization and interface
from flask import Flask, request, jsonify, render_template
import subprocess
import json
from ctypes import CDLL, Structure, c_char, c_double, POINTER
import networkx as nx
import matplotlib.pyplot as plt
from io import BytesIO
import base64

app = Flask(__name__)

# Load C data processor
class Entity(Structure):
    _fields_ = [
        ("name", c_char * 100),
        ("influence_score", c_double)
    ]

data_lib = CDLL('./data_processor.so')
data_lib.process_csv.argtypes = [c_char_p, POINTER(Entity)]
data_lib.process_csv.restype = c_int
data_lib.normalize_scores.argtypes = [POINTER(Entity), c_int]

# Initialize C++ analyzer
analyzer_process = subprocess.Popen(
    ['./power_analyzer'],
    stdin=subprocess.PIPE,
    stdout=subprocess.PIPE,
    text=True
)

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/analyze', methods=['POST'])
def analyze_power():
    # Process uploaded data
    file = request.files['data']
    entities = (Entity * 10000)()
    
    count = data_lib.process_csv(file.filename.encode(), entities)
    data_lib.normalize_scores(entities, count)
    
    # Build relationships (simplified)
    relationships = []
    for i in range(min(count, 100)):  # Limit for demo
        for j in range(i+1, min(count, 100))):
            if abs(entities[i].influence_score - entities[j].influence_score) < 0.3:
                relationships.append(
                    f"{entities[i].name.decode()},{entities[j].name.decode()},"
                    f"{1.0 - abs(entities[i].influence_score - entities[j].influence_score)}"
                )
    
    # Send to C++ analyzer
    analyzer_process.stdin.write(f"ANALYZE\n{count}\n")
    for rel in relationships:
        analyzer_process.stdin.write(f"{rel}\n")
    analyzer_process.stdin.write("END_RELATIONS\n")
    analyzer_process.stdin.flush()
    
    # Get results
    results = []
    while True:
        line = analyzer_process.stdout.readline().strip()
        if line == "END_RESULTS":
            break
        results.append(json.loads(line))
    
    # Generate visualization
    G = nx.DiGraph()
    for entity in results[0]['nodes']:
        G.add_node(entity['name'], score=entity['score'])
    for rel in results[1]['relationships']:
        G.add_edge(rel['source'], rel['target'], weight=rel['weight'])
    
    pos = nx.spring_layout(G)
    plt.figure(figsize=(12, 12))
    nx.draw_networkx_nodes(G, pos, node_size=[v['score']*1000 for v in G.nodes.values()])
    nx.draw_networkx_edges(G, pos, width=[d['weight']*2 for u,v,d in G.edges(data=True)])
    nx.draw_networkx_labels(G, pos, font_size=8)
    
    buf = BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    plt.close()
    
    return jsonify({
        "top_influencers": results[0]['nodes'][:10],
        "power_clusters": results[1]['clusters'],
        "graph_image": base64.b64encode(buf.read()).decode('utf-8')
    })

if __name__ == '__main__':
    app.run(port=5000)
```

## Key Features

### 1. Power Network Analysis (C++)
- PageRank algorithm for influence measurement
- Community detection for power clusters
- Graph traversal for relationship mapping

### 2. Data Processing (C)
- High-speed CSV parsing
- Text normalization and cleaning
- Memory-efficient data structures

### 3. Interactive Visualization (Python)
- NetworkX for graph analysis
- Matplotlib for dynamic rendering
- Flask web interface

## Advanced Components

### 1. Temporal Influence Tracker (C++)
```cpp
// temporal_analyzer.cpp - Time-based power shifts
#include <map>
#include <vector>
#include <string>
#include <algorithm>

class TemporalAnalyzer {
private:
    map<int, map<string, double>> timeline; // year -> entity -> score
    
public:
    void add_year_data(int year, const map<string, double>& data) {
        timeline[year] = data;
    }
    
    vector<pair<string, double>> get_top_entities(int year, int k=5) {
        if (timeline.find(year) == timeline.end()) {
            return {};
        }
        
        vector<pair<string, double>> entities(
            timeline[year].begin(), timeline[year].end());
            
        sort(entities.begin(), entities.end(),
            [](const auto& a, const auto& b) { return a.second > b.second; });
            
        if (k > entities.size()) k = entities.size();
        return vector<pair<string, double>>(entities.begin(), entities.begin() + k);
    }
    
    map<string, vector<pair<int, double>>> get_entity_history(const string& entity) {
        map<string, vector<pair<int, double>>> result;
        
        for (const auto& year_entry : timeline) {
            int year = year_entry.first;
            const auto& data = year_entry.second;
            
            if (data.find(entity) != data.end()) {
                result[entity].emplace_back(year, data.at(entity));
            }
        }
        
        return result;
    }
    
    vector<string> get_rising_powers(int start_year, int end_year, int k=5) {
        map<string, double> growth_rates;
        
        for (const auto& entity_entry : timeline[start_year]) {
            const string& entity = entity_entry.first;
            
            if (timeline[end_year].find(entity) != timeline[end_year].end()) {
                double start_score = entity_entry.second;
                double end_score = timeline[end_year].at(entity);
                double growth = (end_score - start_score) / start_score;
                growth_rates[entity] = growth;
            }
        }
        
        vector<pair<string, double>> entities(
            growth_rates.begin(), growth_rates.end());
            
        sort(entities.begin(), entities.end(),
            [](const auto& a, const auto& b) { return a.second > b.second; });
            
        if (k > entities.size()) k = entities.size();
        vector<string> result;
        for (int i = 0; i < k; ++i) {
            result.push_back(entities[i].first);
        }
        return result;
    }
};
```

### 2. Geopolitical Event Correlator (Python)
```python
# event_correlator.py - News/event analysis
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

class EventAnalyzer:
    def __init__(self):
        self.vectorizer = TfidfVectorizer(stop_words='english', max_features=1000)
        self.event_vectors = None
        self.event_data = pd.DataFrame()
    
    def load_events(self, filepath):
        self.event_data = pd.read_csv(filepath)
        self.event_vectors = self.vectorizer.fit_transform(self.event_data['description'])
    
    def find_related_events(self, query, top_n=5):
        query_vec = self.vectorizer.transform([query])
        similarities = cosine_similarity(query_vec, self.event_vectors)
        top_indices = similarities.argsort()[0][-top_n:][::-1]
        return self.event_data.iloc[top_indices].to_dict('records')
    
    def correlate_with_power(self, entity_name, power_data):
        entity_events = self.event_data[
            self.event_data['entities'].str.contains(entity_name, case=False)]
        
        if len(entity_events) == 0:
            return None
            
        # Simple correlation analysis
        merged = pd.merge(
            entity_events,
            power_data,
            left_on='year',
            right_on='year',
            how='left'
        )
        
        return merged[['year', 'event_type', 'description', 'power_score']].to_dict('records')
```

## Integration Strategy

1. **Data Flow**:
   ```
   Raw Data → C Processor → C++ Analyzer → Python Visualizer → Web Interface
   ```

2. **Performance Optimization**:
   - C handles 1M+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值