以下是使用 Python、Perl 和 Redis 开发车床模型自动化生成 APP 的方案,结合三者特性分工实现核心功能:
一、技术栈分工
表格
技术 职责描述
Python 前端开发(跨平台界面)、模型生成算法、CAD 接口集成
Perl 车床工艺规则解析、G代码生成、与机床硬件通信协议处理
Redis 实时数据缓存(模型参数、加工进度)、多用户任务队列管理
二、系统架构设计
1. 前端界面(Python + Kivy/PyQt)
- 功能:
- 可视化参数输入:工件尺寸(直径/长度)、材料类型、加工类型(车外圆/镗孔/螺纹)。
- 3D 预览:调用 pyvista 或 OpenGL 实时渲染车床模型。
- 任务提交:将参数存入 Redis 队列,触发后台处理。
- 示例界面布局:
python
# Kivy 示例代码(参数输入表单)
from kivymd.uix.boxlayout import MDBoxLayout
from kivymd.uix.textfield import MDTextField
class ParamInput(MDBoxLayout):
orientation = "vertical"
add_widget(MDTextField(label="工件直径 (mm)", hint_text="50"))
add_widget(MDTextField(label="加工深度 (mm)", hint_text="3"))
# ...其他参数输入组件
2. 后端核心逻辑
A. 任务调度与缓存(Redis)
- 数据结构:
- 队列: LPUSH 存储待处理的模型生成任务(JSON 格式参数)。
- 哈希表: HSET 保存任务状态( processing / completed )、结果文件路径。
- Python 操作示例:
python
import redis
r = redis.Redis(host='localhost', port=6379, db=0)
task_data = {"user_id": "123", "params": {"diameter": 50, "depth": 3}}
r.lpush("lathe_tasks", json.dumps(task_data)) # 提交任务
B. 模型生成与工艺处理(Python + Perl 协作)
- Python 职责:
1. CAD 模型生成:
- 调用 cadquery 或 OpenCASCADE 生成车床工件的 STEP/STL 文件。
python
import cadquery as cq
part = cq.Workplane("XY").circle(25).extrude(100) # 生成直径50mm、长100mm的圆柱体
2. 任务分发:从 Redis 队列取任务,调用 Perl 脚本处理工艺逻辑。
- Perl 职责:
1. 工艺规则解析:根据材料(如钢/铝/铜)和加工类型,生成对应 G 代码。
perl
# 示例:车外圆工艺生成 G 代码
sub generate_gcode {
my ($diameter, $depth) = @_;
return <<GCODE;
G90 G54
T0101
S800 M03
G00 X$diameter Z2.0
G01 Z-$depth F0.2
G00 X100 Z100
M30
GCODE
}
2. 硬件通信:通过 Device::SerialPort 模块将 G 代码发送至机床控制器。
C. 结果返回与存储
- 生成的模型文件(STEP/STL)和 G 代码存储至本地服务器,路径写入 Redis 哈希表。
- Python 前端通过 r.hget("task:123", "file_path") 获取结果,供用户下载或发送至机床。
三、关键功能实现
1. 多任务并行处理
- 使用 Python 线程池或 Celery 异步框架,从 Redis 队列中批量获取任务,避免阻塞界面。
- Perl 脚本可通过 Parallel::ForkManager 实现多进程工艺处理,提升效率。
2. 实时状态监控
- 前端定时轮询 Redis,获取任务状态(如 r.hget("task:123", "status") ),更新界面进度条。
- 加工过程中的机床数据(如转速、进给量)通过 Redis 发布订阅( PUBLISH / SUBSCRIBE )实时推送至 APP。
3. 工艺库管理
- 用 Perl 哈希表存储工艺规则(如不同材料的切削速度、进给率):
perl
my %process_rules = (
steel => { speed => 800, feed => 0.2 },
aluminum => { speed => 1200, feed => 0.3 },
);
- 支持用户自定义规则,保存至 Redis 或本地配置文件。
四、部署与优化
1. 环境配置:
- Python 依赖: kivy / pyqt5 、 cadquery 、 redis-py 。
- Perl 模块: Device::SerialPort 、 Parallel::ForkManager (需 cpanm 安装)。
2. 性能优化:
- 模型生成耗时任务用 numba 加速 Python 算法。
- Redis 启用持久化( RDB / AOF ),避免任务丢失。
3. 硬件适配:
- 通过 Perl 的 Win32::SerialPort (Windows)或 Linux::SerialPort (Linux)适配不同机床通信接口。
五、扩展方向
- AI 工艺优化:用 Python 的 scikit-learn 训练模型,根据历史加工数据推荐最优参数。
- 边缘计算:在机床端部署轻量级 Redis 实例,减少云端通信延迟。
- 多语言支持:通过 Python 的 gettext 和 Perl 的 Locale::Maketext 实现界面语言切换。
如需细化某部分技术细节(如 CAD 建模逻辑或硬件通信协议),可进一步说明需求。