无监督学习的意义
对于大部分数据来讲,一般只有数据,没有标签 只有x没有y
无监督学习 没有标签,自己提取自己的特征
无监督方法
机器学习:降维:PCA(主成成分分析)
聚类
深度学习方法:生成对抗网络
自监督学习:对比学习和生成式监督 自己当自己的标签
对比学习:让自己和自己靠的更近 数据增广
对抗生成网络:GAN
生成式自监督:
把自己的一部分当成标签y
编码器 解码器
词编码 词向量化
self-attention :自注意力机制
序列输入 考虑前后关系
记忆单元(“传家宝”) RNN(循环) LSRTM(长短期记忆)
RNN和LSRTM 太慢了
只能一个一个来,一代接一代 只能串行不能并行
self-attention 并行不需要等待前面的结果