国密算法深度解析:从数学原理到代码实现

随着《密码法》和等保2.0的推进,国密算法(SM系列)已成为国内信息系统建设的标配。本文将带领开发者深入国密算法的数学底层,理解其设计思想,并通过代码示例展示典型应用场景。

一、SM2:基于椭圆曲线的现代密码学明珠

1.1 数学基石:椭圆曲线离散对数问题
SM2构建在椭圆曲线群上,其安全性基于ECDLP(椭圆曲线离散对数问题)的难解性。以国家密码局推荐的椭圆曲线参数为例:

  • 素数域:p = FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000000 FFFFFFFF FFFFFFFF
  • 椭圆曲线方程:y² = x³ + ax + b (a=FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000000 FFFFFFFF FFFFFFFC, b=28E9FA9E 9D9F5E34 4D5A9E4B CF6509A7 F39789F5 15AB8F92 DDBCBD41 4D940E93)
  • 基点G的阶n=FFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF 7203DF6B 21C6052B 53BBF409 39D54123

1.2 密钥生成与运算

 

python复制代码

# 伪代码示例:SM2密钥对生成
def generate_keypair():
d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值