信息学竞赛算法——初等数论02

目录

  1. 质数(素数)
  2. 合数
  3. 指数
  4. 整数唯一分解定理
  5. 素数筛选——试除法
  6. 素数筛选——试除法开平方优化
  7. 素数筛选——埃拉托斯特尼筛法

1. 质数(素数)

定义:大于1的自然数,除了1和它本身外没有其他因数
特性:最小的质数是2,唯一偶质数

示例代码:判断质数

bool isPrime(int n) {
    if (n <= 1) return false;
    for (int i = 2; i < n; i++) {
        if (n % i == 0) return false;
    }
    return true;
}

// 测试示例
int main() {
    cout << "7是质数吗?" << isPrime(7); // 输出1(true)
    cout << "\n9是质数吗?" << isPrime(9); // 输出0(false)
}

2. 合数

定义:大于1的自然数,除了1和它本身还有其他因数
特性:最小合数是4,所有大于2的偶数都是合数

示例代码:判断合数

bool isComposite(int n) {
    return (n > 1) && !isPrime(n);
}

3. 指数

定义:表示相同因数相乘的次数
应用:质因数分解中记录质数的幂次

示例:12 = 2²×3¹

指数分别为2和1


4. 整数唯一分解定理

定理:每个大于1的整数都可以唯一表示为质数的乘积

示例代码:质因数分解

void primeFactorization(int n) {
    for (int i = 2; i <= n; i++) {
        int exponent = 0;
        while (n % i == 0) {
            exponent++;
            n /= i;
        }
        if (exponent > 0) {
            cout << i << "^" << exponent << " ";
        }
    }
}

// 测试示例
int main() {
    primeFactorization(60); // 输出2^2 3^1 5^1
}

5. 素数筛选——试除法

原理:对每个数进行质数判断

示例代码

void trialDivision(int n) {
    for (int i = 2; i <= n; i++) {
        if (isPrime(i)) {
            cout << i << " ";
        }
    }
}

// 测试示例
int main() {
    trialDivision(20); // 输出2 3 5 7 11 13 17 19
}

6. 试除法开平方优化

优化原理:只需检查到√n即可,因为整数n是合数,必存在一对因数满足 1 < a ≤ b < n,使得 a×b = n,所以只需要取√n即可

优化代码

bool isPrimeOptimized(int n) {
    if (n <= 1) return false;
    for (int i = 2; i*i <= n; i++) { // 关键优化点
        if (n % i == 0) return false;
    }
    return true;
}

7. 埃拉托斯特尼筛法

算法步骤

  1. 创建1~n的标记数组,全部标记为true
  2. 从最小质数开始划去所有倍数
  3. 剩余未划去的数即为质数

埃拉托斯特尼筛法图解
在这里插入图片描述

示例代码

void sieveOfEratosthenes(int n) {
    vector<bool> isPrime(n + 1, true);
    isPrime[0] = isPrime[1] = false;

    for (int i = 2; i <= n; i++) {
        if (isPrime[i]) {
            for (int j = 2 * i; j <= n; j += i) {
                isPrime[j] = false;
            }
        }
    }

    for (int i = 2; i <= n; i++) {
        if (isPrime[i]) cout << i << " ";
    }
}

// 测试示例
int main() {
    sieveOfEratosthenes(30); 
    // 输出2 3 5 7 11 13 17 19 23 29
}

算法复杂度对比

方法时间复杂度适用场景
普通试除法O(n²)小范围判断
开平方优化试除法O(n√n)中等范围判断
埃拉托斯特尼筛法O(n loglogn)大规模筛选

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值