- 博客(124)
- 收藏
- 关注
原创 AAAI 2026 时间序列预测新突破:三模态自适应融合模型 T3Time!
如上图所示,整个模型主要由三个阶段构成:三模态编码、自适应多头交叉模态对齐以及通道级残差连接。下面我们对每个模块进行详细解析。
2025-12-08 16:10:28
797
原创 2025必追新热点!贝叶斯时序模型大突破:LLM+状态空间模型,文本+数值联合预测稳了!
多源融合领域,时间证据融合网络通过证据理论整合多维度信息,提升预测鲁棒性。这些进展解决了传统方法灵活性不足、计算效率低的痛点,在宏观经济预测、临床风险评估等场景中误差降低20%以上,凸显其适配复杂现实需求的核心价值,推动研究持续深化。该研究针对现实世界预测中结构化时序数据与非结构化文本信息融合的需求,以及现有方法固定输入输出范围、无法量化不确定性的局限,提出了LLM融合贝叶斯状态空间模型(LBS)这一概率框架。二是适配的预训练大语言模型,用于编码文本输入以进行后验状态估计,并解码与潜在轨迹一致的文本预测。
2025-12-05 14:13:47
934
原创 ACMMM 2025 | 多变量时序分析新突破:Foresail实现LLM知识与深度网络的协同优化!
本文提出了一个名为Foresail的创新框架,它成功地在多变量时间序列分类任务中,将大型语言模型中蕴含的自然语言知识与传统的深度学习网络相结合。实验证明,该方法不仅在多个数据集上取得了领先的性能,而且其独特的不确定性学习机制能够有效应对LLM的“幻觉”问题。这项研究为如何利用LLM增强复杂数据分析任务提供了一个非常具体、可行的范例,对后续研究有着重要的启示作用。
2025-12-04 17:41:21
933
原创 动态图 GNN 鲨疯了!结合扩散预处理器,长序列预测稳得离谱!
动态拓扑时序建模是时间序列分析与动态图GNN结合的核心研究方向,广泛应用于交通流、能源消耗等实际场景。这类场景中数据不仅存在时序依赖,空间拓扑还会随时间动态变化,传统静态图GNN难以适配拓扑演变,而传统时序模型又忽略空间关联。虽有部分动态图方法被提出,但大多面临拓扑学习复杂度高、时空特征协同建模不足的问题,难以兼顾预测精度与效率。因此,基于动态图GNN的动态拓扑时序建模,成为突破现有瓶颈、提升复杂场景时序预测性能的关键方向,具有重要的研究与应用价值。另外相关论文源码合集我都已经整理好,感兴趣的自取!
2025-12-03 16:55:04
659
原创 封神!时空 GNN 解锁时间序列预测新范式,门增强神经常微分方程加持,动态空间关联一网打尽!
空间关联时序预测(如交通流、区域负荷)是智能城市决策的核心支撑,其数据兼具时间依赖性与空间关联性的耦合特征,精准预测对交通调度、资源配置至关重要。传统时间序列模型(如ARIMA)仅捕捉时间维度规律,忽略空间节点交互;单纯空间模型又难以刻画动态时序演变。时空图神经网络(STGNN)的出现突破此瓶颈,STGCN、ASTGCN等经典模型通过图卷积捕捉空间关联、时序模块建模动态演变,实现时空特征协同学习。
2025-12-01 16:27:17
588
原创 ACMMM 25 | 融合文本、时序与空间关系:MMLoad 实现高精度建筑负荷预测与不确定性量化!
本文提出的MMLoad框架,成功地将建筑的文本描述、时序数据和空间关系等多模态 (multimodal)信息与扩散模型相结合,为建筑电力负荷预测问题提供了一个全新的、功能强大的解决方案。实验结果表明,该模型不仅在预测精度上超越了现有先进方法,还能生成多样化且符合现实的未来负荷场景,量化了预测的不确定性。这项研究为智能楼宇的能源管理提供了更精准、更可靠的决策依据,并为后续在智慧能源领域应用多模态学习和生成模型开辟了新的道路。
2025-11-28 16:28:54
963
原创 2025年必读的16篇时间序列+时空数据顶会论文!
在数字化时代,海量复杂数据蕴含丰富时空信息,时间序列与时空数据融合研究成为解决实际问题的关键。传统时间序列分析仅关注时间变化趋势,忽略空间属性,难以精准刻画交通流量、气象变化等现实现象——这类现象既随时间动态演变,又受空间关联影响。物联网、传感器技术的发展提供了充足数据支撑,机器学习与深度学习算法的进步则为挖掘数据规律提供了有力工具。二者融合能更全面理解数据,提升预测准确性与可靠性,为城市规划、灾害预警、市场分析等领域提供高价值决策依据,已成为学术界与工业界的研究热点,应用前景广阔。
2025-11-27 17:33:25
1058
原创 ACMMM 2025 | 2600亿点预训练!TimesBERT一统时序理解江湖,分类、异常检测、填补全能SOTA!
本文成功地将BERT的思想范式迁移到了时间序列分析领域,提出了一个强大的基础模型TimesBERT。通过将多变量时序类比为文档,并设计了匹配的嵌入方式和“功能令牌预测”这一创新预训练任务,模型能够学习到时间序列的多层次结构化特征。大规模实验证实,TimesBERT在分类、异常检测等四类理解任务上表现出色,其学到的通用表示为解决数据稀缺场景下的时序分析问题提供了极具价值的解决方案。
2025-11-26 17:18:32
749
原创 CIKM 2025 | 时间序列相关论文盘点(附原文源码)!
CIKM(ACM International Conference on Information and Knowledge Management)是信息检索、知识管理与数据库领域的顶级国际学术会议,2025 年为第 34 届,于 11 月 10-14 日在韩国首尔举办。
2025-11-25 17:21:49
526
原创 时序论文速递:覆盖时序预测与趋势分析、时序异常检测与表征学习、时序生成与动态建模等方向 (11.17-11.21)
本周精选9篇时间序列领域前沿论文,覆盖时序预测与趋势分析、时序异常检测与表征学习、时序生成与动态建模等其他方向。相关论文合集已经整理好,感兴趣的自取!
2025-11-24 17:05:32
829
原创 Time Series在量化交易中到底重不重要?低频靠因子,高频靠它!
本文成功地提出了一个名为N-BEATS-GAN的深度学习框架,它巧妙地将N-BEATS的精准预测能力与GAN的分布建模能力相结合。实验证明,该模型在多序列、多输出的金融时间序列预测任务中,无论是在预测精度(MAE, MSE, CRPS)还是在风险量化能力上,都显著超越了现有的多种先进模型。这项研究为金融预测领域提供了一个更强大、更全面的工具,对后续的量化交易和风险管理研究具有重要的启示作用。
2025-11-21 17:33:37
715
原创 NeurIPS 2025 | 大视觉模型做时序预测,总被“周期”带跑偏?这篇论文让它看清趋势了!
本文从理论和实验上证明,通过一个精心设计的分解框架,可以有效结合数值和视觉两种模态的优势,显著提升长时序预测的性能。其提出的DMMV-A模型通过新颖的自适应分解机制,成功克服了现有LVM方法中的周期性偏置问题,在多个基准测试中刷新了记录。这项研究不仅为时序预测任务提供了一个强大的新工具,也为未来如何将不同模态的大模型(如视觉、语言模型)应用于时序分析领域,开辟了富有前景的研究方向。
2025-11-20 16:29:53
779
原创 AAAI 26 | EMAformer革新时序预测!三大嵌入释放Transformer潜力,MAE直降5.15%性能超越MLP!
多变量时间序列预测(MTSF)任务旨在基于过去L个时间步的C个变量/通道观测数据,学习函数fRL×C→RH×CfRL×C→RH×CYt1tHfXt−L1tYt1tHfXt−L1t其中,Xt−L1txt−L1xt−L2xtXt−L1txt−L1xt−L2...xt(历史观测序列,每个xt∈RCxt∈R。
2025-11-18 17:35:13
1163
原创 时序论文速递:覆盖损失函数优化、模型架构创新、理论基础与表征学习、应用场景与隐私保护等方向(11.10-11.14)
本周精选9篇时间序列领域前沿论文,覆盖损失函数优化、模型架构创新、理论基础与表征学习、应用场景与隐私保护等方向。源码和论文感兴趣 自取!
2025-11-17 15:11:33
1004
原创 ICLR 2026 重磅前瞻!Rebuttal前时间序列高分论文大盘点(附分类+核心方法解析)
ICLR 2026 Rebuttal前结果已正式公布!从评审得分分布来看,主流论文得分集中在 4.0–5.0 区间,4.5 分段以 86 篇达到峰值,整体呈现 “中间集中、两端稀疏” 的典型形态;6.0 以上论文数量明显减少,低于 3.0 的论文占比极小,反映出评审意见趋于理性、分化度有限,也意味着创新性与方法普适性成为论文脱颖而出的关键,而时间序列方向研究竞争依然激烈,7.0 以上高分作品往往在理论创新或应用影响力上具备显著突破。
2025-11-14 17:14:35
1424
原创 时间序列预测还能再进步吗?别再迷信Transformer了,问题可能出在评估方式上!
这篇论文的核心贡献在于创建了一个精细可控的合成数据生成框架,从而能够系统地、深入地剖析各种多变量长时序预测模型的真实能力和短板。实验结论非常明确:模型的性能不仅取决于其自身架构,还严重受到数据信号的频率、形状以及噪声类型的影响。例如,所有模型在输入窗口无法覆盖完整信号周期时都会失效;不同模型对锯齿波和正弦波有不同的偏好;并且,特定类型的噪声会精准打击特定架构的弱点。
2025-11-13 16:52:43
826
原创 NeurIPS 2025 中科大等提出PIR:实例感知后处理修正框架,显著提升时序预测可靠性!
本文深入探讨了时间序列预测中普遍存在但常被忽视的实例级变化问题,并创新性地提出了一个模型无关的后处理框架PIR。理论上,它通过一种将不确定性估计与预测误差相关联的巧妙机制来识别潜在的预测失败案例,并结合局部与全局上下文信息进行双重修正。实验上,PIR在多个数据集和多种基础模型上都取得了显著的性能提升,证明了其作为一个通用插件的有效性和强大潜力。这项工作为提升时间序列预测模型的可靠性开辟了一个全新的、富有前景的研究方向。
2025-11-12 17:03:20
856
原创 时序论文速递:覆盖多场景时间序列预测、时间序列异常检测、特定领域与时序交叉分析等方向(11.03-11.07)
本周精选8篇时间序列领域前沿论文,覆盖多场景时间序列预测、时间序列异常检测、特定领域与时序交叉分析、时间序列建模优化与可解释性等其他方向。源码和论文皆领取。
2025-11-10 16:12:46
609
原创 CIKM 2025 中国科技大学&华盛顿大学提出:通过文本增强提升多模态时序预测!
本文的研究结论非常明确:在多模态时间序列预测中,文本模态的质量至关重要。作者提出的TeR-TSF框架,通过一个由强化学习优化的LLM,将低质量的原始文本“提纯”为高质量的强化文本。这个强化文本不仅语义上与任务更相关,还能为预测模型提供关于数据动态的深刻洞见。实验证明,这种“先增强、再融合”的策略,能够稳定且显著地提升预测的准确性,效果超越了当前许多先进的方法。
2025-11-06 16:11:02
1062
原创 小样本也能精准预测!时间序列小样本学习突破技术瓶颈!
现实中金融、医疗、交通等领域的时间序列常因新兴业务数据不足、医疗隐私限制等面临,传统深度学习难以应对,如新路段交通数据缺失致预测模型失效;现有研究多通过元学习捕捉跨任务共性、迁移学习利用预训练特征、生成模型增强数据多样性破局,但仍存跨域差异、动态特征捕捉不足等问题,随着边缘计算普及,该领域成为热点,其突破不仅推动AI在数据稀缺场景落地,更具揭示时序本质特征的理论价值,或为自动驾驶、灾害预警等数据效率要求高的领域带来技术升级。我整理了,感兴趣的自取!
2025-11-05 16:57:34
656
原创 2025 | 时序预测新范式:多智能体AI系统实现全流程自动化!
本文成功地提出了TimeSeriesScientist(TSci),这是一个创新的、端到端的自动化时间序列预测框架。理论上,它通过一种模仿人类专家的多智能体协作机制,实现了数据处理、模型选择、集成预测和报告生成的全流程自动化与智能化。实验结果也证明了它的强大实力,在多个标准数据集上,TSci的预测准确性显著超越了现有的统计模型和其他领先的大语言模型方法,同时其生成的报告在严谨性和可解释性方面也表现出色。
2025-11-04 17:16:54
836
原创 时序论文速递:覆盖时间序列预测、时间序列异常检测、时间序列因果关系发现等方向!(10.27-10.31)
本周精选10篇时间序列领域前沿论文,覆盖时间序列预测、时间序列异常检测、时间序列因果关系发现、时间序列其他方向。源码和论文感兴趣的自取。
2025-11-03 17:19:57
710
原创 NeurIPS 2025 惊艳亮相!SHAPEX在100+数据集上验证,泛化性卓越!
它不再孤立地看待每个时间点,而是通过学习到的关键“波形”(塑形)来对时间序列进行有意义的分割,并评估每个片段对模型预测的贡献。它首先学习并识别出对分类最重要的“标准波形”(即塑形),然后用这些“标准波形”将待解释的时间序列分割成有意义的片段,并计算每个片段对最终预测结果的贡献度。例如,在医疗诊断中,SHAPEX可以告诉医生,模型将一段心电图判断为异常,是因为它识别出了某个特定的、形态完整的“异常P波”,而不是一些零散的、无意义的数据点。,这些塑形既能代表数据中的关键模式,又具有很强的区分性。
2025-10-31 17:18:31
1055
原创 多变量时序分析新突破!时域+频域融合,13篇顶刊论文全面解读!
在数据驱动的现代社会,多变量时间序列数据广泛存在于金融、工业、生态等领域,蕴含丰富价值。传统分析受限于变量关系复杂等难题,而时域与频域分析的融合恰好形成优势互补——时域捕捉时刻间细微变化,频域揭示周期性与频率特征,全面挖掘数据深层规律,在金融风险预测、工业设备故障预警等场景中成效显著。本次精选13篇前沿论文,深入解析多变量时间序列与频域结合的创新技术及应用,为论文写作开拓思路!另外我整理了,感兴趣的dd!
2025-10-30 16:11:00
603
原创 KDD 2025 | 重磅发布!TSFM-Bench:首个时间序列基础模型统一基准诞生!
该论文的核心目标是为新兴的时间序列基础模型(TSFMs)提供一个全面、统一且公平的评估基准TSFM-Bench。研究旨在解决当前TSFMs评估中存在的关键问题:不同模型采用迥异的训练策略、数据集和评估场景,导致性能无法进行直接和公平的比较。为实现此目标,TSFM-Bench做出了三大技术贡献:整合了覆盖10个领域、具有多样化统计特征的21个多变量时间序列数据集;涵盖了当前主流的TSFMs,包括TS预训练模型和基于LLM的模型,并引入了先进的特定模型 (specific models)作为对比基线;
2025-10-29 14:59:54
1006
原创 时序论文速递:覆盖时间序列预测、分类、异常检测及交叉应用!(10.20-10.24)
本周精选10篇时间序列领域前沿论文,覆盖时间序列预测、分类、异常检测及交叉应用四个核心方向。源码和论文感兴趣的自取。
2025-10-27 16:52:46
1165
原创 2025 | Transformer时间序列预测翻车?注意力机制竟成摆设!
该论文旨在深入探究为何基于Transformer的架构在时间序列预测任务中表现不佳,甚至逊于简单的线性模型。核心研究发现,在现有的时间序列Transformer(如PatchTST, iTransformer)中,Transformer模块普遍退化为简单的MLP。作者通过创新的实验设计(如注意力替换和模块扰动)量化地证明,模型的预测性能主要依赖于前馈网络(FFN)而非注意力模块。例如,扰动FFN模块会显著降低性能,而扰动甚至完全替换注意力模块对结果影响甚微(如表1。
2025-10-24 15:31:42
867
原创 突破黑盒!时间序列+注意力可视化,模型决策一目了然
时间序列分析是理解金融、气象、工业等领域动态规律的核心。随着深度学习的发展,特别是Transformer及其注意力机制的崛起,模型在处理长序列依赖关系上取得了突破性进展。然而,这些黑盒模型内部的决策过程往往难以解读。注意力可视化则通过热力图等形式,直观地揭示模型在做出预测时,更关注历史序列中的哪些关键时间点与特征。这不仅增强了模型的可信度与透明度,也为研究者提供了诊断模型、发现数据内在模式的强大工具。本文整理了10篇时间序列+注意力可视化相关前沿论文,供大家参考学习,有需要可以自取。
2025-10-23 17:26:44
634
原创 KDD 2025 | CMA:用于时序去噪和预测的统一情境元自适应方法!
本文首先回顾了传统时序预测模型在面对可变历史长度和预测范围时的僵化与局限性。为解决此问题,本文提出了 CMA,一个统一的情境元自适应框架。CMA 巧妙地将去噪扩散过程与元学习相结合,使模型能够在测试时根据具体情境进行高效的自我调整。实验证明,无论是在学术基准还是真实的工业数据集上,CMA 均展现出卓越的预测精度和灵活性。
2025-10-22 17:11:54
698
原创 时间序列预测的 “图像化” 革命:TGSI 指标让结构相似性评估一目了然!
针对时间序列预测中传统指标无法捕捉几何结构的问题,提出TGSI指标评估几何结构,同时因TGSI无法直接作为训练损失,引入SATL损失函数。实验表明,SATL训练的模型在MSE和TGSI指标上均优于传统方法,尤其在长期预测中优势明显,且不增加推理成本。相关工作方面,本研究填补了将图像领域指标应用于时间序列领域的空白,验证了几何结构对提升预测性能的重要性。
2025-10-21 17:09:36
516
原创 时序论文速递 | 覆盖时间序列预测与泛化能力优化等方向!(10.13-10.17)
本周精选10篇时间序列领域前沿论文,覆盖4个时序方向:时间序列预测与泛化能力优化,时序数据驱动的跨领域应用,时间序列异常检测与事件预测,时间序列推理与不确定性量化方向。源码和论文感兴趣的自取!
2025-10-20 17:07:13
710
原创 KDD 2025 | MetaEformer:揭示并利用元模式进行复杂动态系统负载预测!
本文首先回顾了现有时间序列预测方法在应对工业系统负载预测时面临的困境,即难以同时处理复杂模式、概念漂移和少样本问题。为此,本文提出了一个全新的基于元模式的预测框架 MetaEformer。该框架通过元模式池化机制来动态捕捉和维护系统中的核心基础模式,并通过创新的回声机制将这些模式知识灵活地用于指导预测,显著提升了模型在复杂动态环境下的适应性和准确性。
2025-10-17 15:07:27
951
原创 TPAMI 2025 | 时间序列相关论文盘点(附原文源码)!
(TPAMI)是计算机科学和人工智能领域公认的顶级期刊之一。TPAMI由IEEE Computer Society主办,创刊于1979年,出版周期为月刊。2025年,其影响因子为24.6,在JCR分区中位于Q1区,中科院分区为。它专注于,录用率仅10%,学术认可度堪比顶会最佳论文级别。同时,它也是中国计算机学会推荐的A类期刊,在国际学术界享有广泛影响力。今天给大家精选6篇TPAMI2025中的论文,希望这些顶刊的思路能够对各位”“有所启发!,感兴趣dd,希望能帮到你!
2025-10-16 16:44:32
1361
原创 NeurIPS 2025 | 告别朴素微调!MSFT用多尺度思维彻底改变时序大模型适配方式!
本文旨在解决如何有效微调时间序列基础模型 (TSFMs)以适应特定下游任务这一未被充分探索的挑战。研究发现,朴素微调方法因未能考虑时间序列的内在多尺度特性,常导致模型过拟合和性能次优。本文的核心技术贡献是提出了一个简单而通用的多尺度微调 (MSFT)框架。该框架首先将时间序列降采样至多个尺度;接着,在冻结的预训练模型上,为输入投影层和注意力层引入尺度特定的适配器 (adapter)和LoRA模块,以激活尺度专属知识;然后,通过解耦的尺度内注意力和跨尺度聚合器来捕获依赖关系;
2025-10-15 15:45:22
961
原创 前沿速递:AAAI&ICLR最新时间序列与脉冲神经网络研究精选!
(SNN)凭借生物合理性与时间编码优势,正成为时间序列分析的新兴力量。与传统深度学习模型不同,SNN通过脉冲时序传递信息,天然契合时间序列的动态特性,在捕捉时序依赖与多尺度模式上展现独特潜力。近期研究为SNN在时间序列领域的应用提供新方向。等顶会都有许多相关主题论文。如Temporal-Self-Erasing监督方法通过动态抑制冗余激活区域,增强SNN在时间维度的特征辨别能力,提升模型对时序数据中关键语义的捕捉精度。
2025-10-14 16:57:30
864
原创 时序论文速递:涵盖生成与增强、预测与因果推理、异常检测等方向!(10.01-10.10)
本周精选12篇时间序列领域前沿论文,覆盖4个时序方向:时间序列生成与数据增强,时间序列预测与因果推理,时间序列异常检测,时间序列推理与不确定性量化方向。源码和论文感兴趣的dd。
2025-10-13 17:03:13
846
原创 KDD 2025 | 双管齐下:Enhancer 融合时间与关系元学习提升股票预测鲁棒性!
本文针对金融时序预测中普遍存在的时间与关系双重分布偏移这一核心挑战,提出了创新的元学习框架 Enhancer。通过时间元学习器和关系元学习器的协同工作,Enhancer 能够学习到对分布变化鲁棒的时空表征,并赋能任何下游预测模型。原文、姿 料 这里!
2025-10-11 16:52:50
892
原创 时间序列长期预测新突破:知识蒸馏实现效率与性能双提升!
时间序列预测在交通、能源等领域至关重要,但长期预测中,Transformer、CNN等复杂模型虽性能优异,却存在的问题,难以满足实时场景需求。通过的知识到轻量学生模型,为平衡性能与效率提供思路。然而,时间序列的多尺度、多周期特性及模态相关性,使通用蒸馏方法难以适配,需针对性设计。为此,研究者聚焦时间序列独特属性,提出专门的蒸馏框架:通过,让MLP等轻量模型高效学习关键模式,推动时间序列预测在效率与性能上的突破。我们精选11篇前沿论文,感兴趣的自取~
2025-10-10 15:55:21
588
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅