第一批用AI的打工人,已被折磨疯?

刚吐槽完春晚秧歌机器人的笨拙,回岗上班就惊觉自己似有被AI取代之虞,这堪称今年职场打工人遭遇的最大冲击。

图片

自2022年底ChatGPT发布,大语言模型热度一路飙升,年初DeepSeek的出圈,更是彻底点燃国人对AI的热情。当我妈都开始给我转发《DeepSeek的10个提示词技巧》时,我就预感AI将成显学,只是没想到这一天来得如此迅猛。二月份,领导要求工作流程必须融入AI,三月份,更是要求用AI在半天内完成原本三天的工作量。

从国内的DeepSeek、豆包、Kimi,到国外的ChatGPT、Claude、Grok,工作中我试用过诸多语言模型,可实际工作的空虚感却愈发强烈——AI虽好用,却根本跟不上领导层出不穷的奇思妙想。有了AI,非但没轻松,反倒更累,第一批用上AI的打工人,比如我,已被折腾得苦不堪言。

全国领导齐推AI

并非只有我遭遇领导在AI上的离谱要求,社交媒体上类似吐槽铺天盖地。全球企业都在争抢AI赛道,2024年美国一项调查显示,61%的受访企业计划未来一年用AI完成人类任务,借助AI降本增效、提升员工效率。

AI操作便捷,对话框输入问题,瞬间就能得到看似正确的答案,对企业来说宛如救星,AI热潮如病毒般在公司迅速蔓延。DeepSeek出现前,这一趋势尚不明显,国外工具难用,国内工具不给力,而DeepSeek好用又实惠,一夜之间,不尝试AI的企业反倒成了少数派。

不过,许多企业接触AI并非为了利用其优势,而是害怕不用会被落下,也就是在错失恐惧(FOMO,Fear of Missing Out)驱使下行动。对发达国家IT行业决策者的调查显示,67%的受访者采用AI是因为错失恐惧。

时间紧、任务重,加上盲目跟风,很多企业未认真评估业务,在自身缺乏AI基因、知识、人才和长期规划,甚至业务与AI关联不大的情况下,匆忙上马AI项目。这让AI在企业的推广成为极具挑战性的任务,压力层层转移,领导往往直接把任务丢给下属,只看结果不管过程。

然而,当下的AI远没那么强大,高管常高估其效能。正如罗伊·阿玛拉所说:“人们总是高估一项科技的短期效益,却低估它的长期影响” 。2020年德勤报告显示,参与调查的300名中国商业和IT公司高管所在企业都采用了AI技术,六成以上高管认为AI会在三年内彻底改变组织架构和行业,仅有少数人觉得这一改变需5年以上。站在2025年回望,AI虽已渗透职场,但多数行业受影响程度有限,高管显然高估了其冲击力。

图片

AI不是万能的

即便在今天,AI的能力仍存在局限,产出质量也不稳定,几乎无法独立完成核心工作,人工润色与后期完善不可或缺。

针对创意写作的AI工具综述指出,AI有快速生成长文本、内容一致性高的优点,但也正因内容过于“一致”“通用”,易导致内容饱和,文本单调乏味,读者容易产生厌倦感。这也引发了编辑对AI投稿的不满,有编辑用“AI味”“伪人感”形容AI写的小说,指出其“华美而空洞”“逻辑有缺陷”“喜欢堆砌内容”,读起来十分别扭,难以录用。在职场中,这就好比领导要求修改AI输出的内容,却没考虑到重新撰写或许比修改更高效,毕竟修改那些不符合要求的内容,耗费的时间都够自己从头写两遍了。

AI对某些垂直领域的理解,可能无法超越员工的自身经验,使用AI工具反而可能限制思维。对数据工作者(如业务分析师、数据记者等)的访谈表明,由于数据故事创作能力有限、对数据故事背景理解不足,AI并非数据叙事的万能方案。业务背景抽象复杂,很难向AI阐述清楚,若AI不理解背景,就可能反复输出毫无实际价值的套话,缺乏长期深耕该领域员工的直觉洞察。哪怕是看似简单的资料搜集任务,AI也存在编造资料、资料库滞后等问题。

以某司法判例检索AI为例,律师使用时发现,结论引用案例具有随机性,不会自动纳入效力最高、最具参考价值的案例,还存在断章取义的问题。一旦AI出错,基层编辑、律师、程序员、汇报人就成了第一责任人,而企业更注重结果,这种效率与风险的不平衡必然引发冲突,最终受伤害的还是普通打工人。

图片

AI操作流程看似简单,在对话框打字即可,但实际上,目前很多AI并非无门槛使用。以DeepSeek为例,其对话框内的“深度思考(R1)”选项,是针对“数学、代码以及各种复杂逻辑推理任务”开发的推理模型,若不了解这一点,强行打开R1处理所有任务,结果必然糟糕。还有很多人不明白上下文窗口的重要性,在同一对话框问不同问题,导致DeepSeek回答混乱,却简单归结为AI“幻觉”,而不是自身操作不当。只要了解大模型原理,比如观看OpenAI联合创始人Andrej Karpathy为普通人制作的分享视频,就能避免这些问题。但现实是,很多企业缺乏自上而下的培训和优质资源分享,员工压力大却得不到支持,这才让一些“割韭菜”的人有机可乘。

AI问题,关键在人

AI问题的核心不在AI本身,而在于人,许多问题原本就存在于组织中,AI变革只是将其放大。

比如分配问题:AI提升工作效率,却未必让打工人受益。在竞争激烈的劳动市场或产品市场中,打工人议价能力弱,生产率收益更多流向消费者或企业,而非打工人自身,导致打工人无法通过减少工作时间享受效率提升的成果,陷入“技术发展、效率提高,人却更难平衡工作与生活”的困境。若企业一味逐利,不考虑员工福祉,那么不管是AI还是其他技术带来的效率提升,最终都难以惠及普通员工。

领导是否懂AI,对员工而言并非最重要,更关键的是领导能否为下属着想。能为下属考虑的领导,即便不懂AI,也会提供充足资源和支持,甚至愿意为AI革新的风险担责,在这种情况下,员工掌握AI技能只是时间问题。不为下属考虑的领导,即便懂AI,也很难与员工说清业务细节,还可能因误判员工知识背景下达难以理解的命令,如“AI+”“AI赋能”“重塑流程”等,最终徒劳无功。

图片

受领导信赖的员工,往往被分配更多AI探索和使用任务,时间和精力面临巨大挑战,压力随之而来。从根本上讲,使用AI的好处不能只被企业和领导享有,风险也不该只由一线员工承担。否则,外界鼓吹AI将取代普通人,而普通人在岗位上却发现AI难以运用,那普通人该何去何从?

领导们不应焦虑,应正视AI,与其想着用AI替代打工人,不如建立良好的人 - AI协作机制。正如哈佛商业评论所说:“组织不应简单地在现有流程上叠加AI技术,而应围绕人类与机器的独特优势重新设计工作流程。需要为员工创造与AI协作的机会,以增强其自主性、掌控感和工作意义感。AI不应仅被视为自动化工具和优化工具,更应成为提升职场人文体验的助力。”

AI必将深刻改变人类未来,但我们坚信,在这个未来里,普通人和AI同样重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值