TensorFlow 2基础理论
目录
3. TensorFlow 2 Eager Execution模式
学习目标:
①张量介绍
②TensorFlow 2基本操作
③TensorFlow 2 Eager Execution模式
④AutoGraph
1. 张量介绍
(1)TensorFlow中最基础的数据结构就是张量tensor,所有数据都被封装到tensor中
(2)张量定义:一个多维数组(零阶张量是标量,一阶张量是向量,二阶张量是矩阵)
(3)在TensorFlow中,tensor分为:
①常量tensor:常数constant
②变量tensor:Variable(线性回归中y=wx+b的w和b,以及神经网络当中需要调节的参数,网络当中权重和偏置都是变量,通过学习来确定的值)
2. TensorFlow 2基本操作
(1)常量与变量的创建方式
(2)张量的切片与索引
(3)张量的维度变化
(4)张量的算术运算
(5)张量的拼接与分割
(6)张量排序
3. TensorFlow 2 Eager Execution模式
(1)静态图:采用静态图(Graph模式)的TensorFlow 1,通过计算图将计算的定义和执行分隔开,这是一种声明式(declarative)的编程模型。Graph模式下需要先构建一个计算图然后开启对话session,再喂数据才能得到执行的结果
(2)Eager Execution是一种命令式编程,和原生python一致,当执行某个操作时立即返回结果
4. AutoGraph
在TensorFlow 2中,默认情况下启用了Eager Execution。对于用户来说更直观灵活易于Debug,但会牺牲性能和可部署性
可以使用添加装饰器@tf.function从程序中构建图,来使用AutoGraph。tf.function可以将函数中的TensorFlow操作构建为一个Graph,这个函数就可以在Graph模式执行(函数被封装成一个Graph的TensorFlow操作)