【课程笔记】华为 HCIA-AI 人工智能21:TensorFlow 2基础理论

TensorFlow 2基础理论

目录

TensorFlow 2基础理论

1. 张量介绍

2. TensorFlow 2基本操作

3. TensorFlow 2 Eager Execution模式

4. AutoGraph


学习目标:

①张量介绍

②TensorFlow 2基本操作

③TensorFlow 2 Eager Execution模式

④AutoGraph

1. 张量介绍

(1)TensorFlow中最基础的数据结构就是张量tensor,所有数据都被封装到tensor中

(2)张量定义:一个多维数组(零阶张量是标量,一阶张量是向量,二阶张量是矩阵)

(3)在TensorFlow中,tensor分为:

常量tensor:常数constant

变量tensor:Variable(线性回归中y=wx+b的wb,以及神经网络当中需要调节的参数,网络当中权重偏置都是变量,通过学习来确定的值)

2. TensorFlow 2基本操作

(1)常量与变量的创建方式

(2)张量的切片与索引

(3)张量的维度变化

(4)张量的算术运算

(5)张量的拼接与分割

(6)张量排序

3. TensorFlow 2 Eager Execution模式

(1)静态图:采用静态图(Graph模式)的TensorFlow 1,通过计算图将计算的定义执行分隔开,这是一种声明式(declarative)的编程模型。Graph模式下需要先构建一个计算图然后开启对话session,再喂数据才能得到执行的结果

(2)Eager Execution是一种命令式编程,和原生python一致,当执行某个操作时立即返回结果

4. AutoGraph

TensorFlow 2中,默认情况下启用了Eager Execution。对于用户来说更直观灵活易于Debug,但会牺牲性能和可部署性

可以使用添加装饰器@tf.function从程序中构建图,来使用AutoGraph。tf.function可以将函数中的TensorFlow操作构建为一个Graph,这个函数就可以在Graph模式执行(函数被封装成一个Graph的TensorFlow操作)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值