现在人工智能可以说是非常的火热,很多同学也想学习。但刚开始时总会觉得比较迷茫,不知道如何开始学,也担心人工智能太难,自己可能学不会。所以今天这篇文章对如何去学习人工智能,给出一份学习路线。
1.基础知识准备
对于初学者来说,扎实的基础知识是成功的关键。建议先掌握线性代数、概率论与统计学以及优化理论等内容。这些基础知识不仅有助于理解机器学习算法的工作原理,还能提升对复杂模型架构的理解能力。
2.编程技能培养
Python 是目前最流行的编程语言之一,在人工智能领域尤其重要。因此,熟悉 Python 的基本语法及其常用库(如 NumPy, Pandas 和 Matplotlib),并能够熟练运用 TensorFlow 或 PyTorch 这样的深度学习框架是非常必要的。
3.深入了解深度学习
完成上述准备工作之后,可以进一步深入研究神经网络结构及相关技术细节。推荐阅读《Deep Learning》这本书籍作为入门教材,并尝试实现一些经典的卷积神经网络(CNNs)或者循环神经网络(RNNs)。
4.大规模预训练模型的研究
当具备了一定程度上的理论基础和技术积累后,则可转向专注于大规模参数量级的语言或视觉类别的预训练模型上。此时应该关注最新的研究成果和技术动态,比如 GPT 系列、BERT 及其变体等知名的大规模自监督表示方法。
5.实践项目经验获取
除了理论学习之外,实际操作同样不可或缺。可以通过参与 Kaggle 数据竞赛来锻炼自己的建模技巧;也可以利用公开可用的数据集自行设计实验验证想法。另外还可以参与到像 DoctorGLM 这样具体应用场景下的开源项目当中去贡献代码并从中获得宝贵的经验教训。
以上是一个简单的例子展示了如何加载 ChatGLM-6B 并生成一段文字的过程。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来
人工智能大模型学习路线图L1~L7所有阶段
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~