本文基于相关论文,深度探讨挑战及开发RAG系统时遇到的12个常见难题。并深入讨论这些难题的解决策略,帮助我们在日常开发中有效应对。
1. 内容缺失(Missing Content)
问题:知识库中无正确答案时,系统生成看似合理但错误的回答。
解决方案:
-
数据清洗:确保数据质量,移除冲突、重复和低质量信息。
-
优化提示词:加入“若不确定则明确告知”的指令,鼓励模型承认知识盲区。
2. 关键文档未召回(Missed Top-ranked Documents)
问题:关键文档未被检索或排名过低,导致漏答。
解决方案:
-
超参数调优:调整
chunk_size
和similarity_top_k
,平衡检索效率与质量。 -
重排序(Reranking):使用如CohereRerank对初筛结果重新排序,提升精准度。
3. 上下文不相关(Irrelevant Context)
问题:检索的上下文包含答案但未被有效整合。
解决方案:
-
调整检索策略:采用分层检索、知识图谱或自动检索策略。
-
微调嵌入模型:提升向量化质量,增强语义匹配能力。
4. 信息未提取(Unretrieved Content)
问题:上下文信息过载或噪声干扰,关键细节被忽略。
解决方案:
-
提示压缩技术:如LongLLMLingua压缩冗余信息,聚焦核心内容。
-
动态重排序:通过LongContextReorder解决“中间信息丢失”问题。
5. 格式错误(Wrong Format)
问题:输出格式不符合用户需求(如未结构化)。
解决方案:
-
输出解析器:强制模型按JSON、表格等格式生成,结合LangChain等工具实现。
-
结构化Prompt设计:明确要求模型遵循特定模板。
6. 特异性不准确(Specificity Inaccuracy)
问题:答案缺乏细节或过度泛化。
解决方案:
-
多粒度检索:结合句子窗口检索与父-子块策略,增强细节捕捉。
-
HyDE增强:生成假设文档扩展查询,提升召回率。
7. 内容不完整(Incomplete Content)
问题:答案缺失必要步骤或逻辑链断裂。
解决方案:
-
多跳检索(Multi-hop):分解复杂问题为子查询,逐步检索整合。
-
自我一致性(Self-consistency):多次生成答案并投票选择最优。
8. 数据可扩展性差(Data Ingestion Scalability)
问题:处理海量数据时效率低下。
解决方案:
-
并行处理流水线:如LlamaIndex的
IngestionPipeline
支持多线程处理。 -
分片与索引优化:动态分块策略结合混合索引(向量+关键词)。
9. 复杂PDF解析困难(Complex PDF Extraction)
问题:表格、公式等非结构化内容提取失败。
解决方案:
-
版面分析(Layout Parsing):识别PDF中的表格、图片区域。
-
多模态模型:结合OCR与视觉模型处理扫描版文档。
10. 模型安全性(LLM Security)
问题:生成内容存在偏见或泄露敏感信息。
解决方案:
-
输出过滤:部署敏感词检测与后处理模块。
-
本地化部署:使用私有化模型(如魔泊云的Falcon引擎)保障数据隐私。
11. 用户意图模糊(Vague User Intent)
问题:用户提问不明确或包含多条件。
解决方案:
-
意图识别模块:通过LLM或分类模型解析查询意图。
-
追问机制:主动引导用户补充关键信息。
12. 混合推理能力不足(Hybrid Reasoning)
问题:需结合符号推理(如数学计算)与文本生成。
解决方案:
-
程序合成(Program Synthesis):调用Python、SQL等工具辅助计算。
-
Agent框架:如魔泊云的Acton系统协调多智能体分工协作。
总结
上述方案需根据场景灵活组合,例如:
-
数据侧:清洗→智能分块→多模态嵌入。
-
检索侧:HyDE扩展查询→混合索引→重排序。
-
生成侧:结构化解析→多模型投票→安全过滤。
最后
我还是那句话“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1、大模型全套的学习路线
学习大型人工智能模型,人工智能大模型学习路线图L1~L7所有阶段,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
2. 大模型视频教程
对于很多自学或者没有基础的同学来说,这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
3. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~