- 博客(1729)
- 收藏
- 关注
原创 AI应用架构师+科研AI智能体,开启金融学智能化金融分析新纪元
在当前金融分析领域应用 AI 技术,面临着诸多挑战与问题。从数据层面来看,金融数据具有高噪声、非平稳性以及数据缺失等特点。市场中的各种突发因素、政策变化等都会导致数据的噪声增加,而经济周期等因素使得金融数据呈现非平稳性,这给基于数据的模型训练带来了困难。同时,数据缺失在金融数据中也较为常见,例如企业财务报表中的某些数据可能由于各种原因未能及时披露。模型层面,虽然 AI 模型在拟合历史数据方面表现出色,但在泛化能力上仍存在不足。金融市场的高度不确定性使得模型在面对新的市场情况时,预测准确性可能大幅下降。
2025-09-17 18:05:32
461
原创 大数据日志数据的清洗与预处理流程
日志数据是大数据时代的“数字足迹”,涵盖服务器运行、用户行为、物联网设备等多源信息,但其海量、异构、噪声密集的特性使其无法直接用于分析。本文从第一性原理出发,系统拆解日志清洗与预处理的核心逻辑:首先定义数据质量的六大维度(准确性、完整性、一致性等),再通过层次化架构(采集→清洗→预处理→存储→监控)实现从“原始噪声”到“可用价值”的转换。文中结合数学形式化推导(如异常值检测的LOF算法)、生产级代码实现(Spark/Flink处理示例)、可视化架构图(Mermaid流程图),并融入实时流式处理与批处理。
2025-09-17 16:43:35
221
原创 AI应用架构师实战:用Kubeflow实现模型生命周期管理
MLOps(Machine Learning Operations)的核心目标,就是把软件工程的「DevOps」理念引入机器学习,将模型生命周期的每一步(数据准备→训练→验证→部署→监控→迭代)标准化、自动化、可协作化。而Kubeflow,正是MLOps领域的「瑞士军刀」——它是Kubernetes原生的开源MLOps平台,把机器学习的各个环节包装成K8s可管理的组件,让你能在K8s集群上一键构建「端到端的模型生命周期 pipeline」。
2025-09-17 15:12:45
158
原创 《速抢干货包!提示工程架构师优化提示系统用户参与策略》
假设你开发了一款AI写作助手,背后用了GPT-4这样的强大模型,但用户看到的第一个界面是:“请输入你的需求”——这就像餐厅里的服务员说“随便点”,大部分用户会一脸迷茫,转身就走。提示系统的本质是“用户需求的翻译器”:它把用户的模糊需求(“我想写篇文章”)转化为AI能理解的清晰指令(“写一篇关于环保的文章,用家庭故事开头,分3点说明减少塑料使用的方法”),同时引导用户做出具体选择(“你想选故事性开头还是数据性开头?”)。
2025-09-17 13:44:33
448
原创 大数据领域ClickHouse的数据清洗与预处理
本文将聚焦大数据场景下基于ClickHouse的数据清洗与预处理,从数据接入→质量诊断→核心清洗(缺失/重复/异常值处理)→数据转换→流程自动化,手把手带你掌握全流程技术细节。我们会结合真实业务案例,通过大量可直接复用的ClickHouse SQL代码,演示如何利用ClickHouse的列式存储、向量化执行和分布式计算能力,高效处理TB级数据的预处理任务。数据接入:通过外部表查询原始数据,导入MergeTree表长期存储;数据诊断:用SQL函数检测缺失值、重复值、异常值;核心清洗。
2025-09-17 12:07:37
193
原创 提示工程架构师亲测:智能投顾中prompt调试的4个工具推荐
想象你请了一位投资顾问(智能投顾系统),但他总是「听错话」:你说「我是保守型投资者」,他推荐了高风险股票;你问「养老钱怎么配置」,他聊起了短期投机。问题出在哪儿?不是顾问不专业,而是你给他的「问题清单」(Prompt)没写清楚。提示工程就是「写好问题清单」的技术,而调试工具则是「修改清单的放大镜和修正液」。为什么智能投顾的Prompt调试比普通场景更难?(金融合规性、用户需求复杂性、市场动态性)4个工具分别能解决哪些具体痛点?(从「猜问题出在哪」到「精准定位并优化」)
2025-09-17 10:45:38
690
原创 提示工程架构师揭秘:Agentic AI应用中“优先级排序”技巧
本文将从提示工程架构师从规则引擎的基础逻辑入手,学会用明确的规则处理简单场景;进阶到机器学习预测,让AI从历史数据中学习“什么任务更重要”;再到上下文动态调整,让优先级适应实时变化的环境;最后通过用户反馈循环,让AI代理持续进化,符合用户预期。首先,我们需要用可量化的指标定义优先级。优先级1(最高):用户标记为“紧急”的任务(如“系统崩溃”“订单无法支付”);优先级2(中等):用户未标记,但属于“核心业务”的任务(如“查询订单状态”“修改收货地址”);优先级3(最低)
2025-09-17 09:23:41
672
原创 事件驱动架构在智能数字权益管理平台的设计与应用
目的:解释“事件驱动架构”是什么,以及它如何让智能数字权益管理平台更灵活、更能扛住压力。范围:覆盖EDA的核心概念(事件、事件总线、生产者/消费者)、在DRM中的架构设计、代码实战、应用场景,不涉及太深的分布式理论。用“奶茶店故事”引出EDA;解释EDA核心概念(事件、总线、生产者/消费者);用“写信”类比概念间的关系;画Mermaid流程图展示DRM中的EDA流程;用Python写一个可运行的DRM事件驱动demo;讲实际应用场景(如权益兑换、过期提醒);推荐工具和未来趋势;
2025-09-17 03:00:05
558
原创 新手起步:提示工程架构师提示设计迭代攻略
刚接触提示工程(Prompt Engineering),对大型语言模型(LLM)如 GPT-4/Claude 等有基本了解,但希望系统学习如何结构化、迭代式地设计和优化提示,以提升提示效果和应用可靠性的“准架构师”。好的,这是一篇专门为你构思的“提示工程架构师”入门攻略文章,遵循你要求的写作风格、结构目录和目标设定,字数控制在 10,000 字以内,使用 Markdown 格式。提示工程不是一锤子买卖,需要通过测试->分析->修改->再测试的闭环,持续收敛,逼近乃至达到。脱离真实测试的提示设计是空中楼阁。
2025-09-16 23:47:03
406
原创 大数据实时分析平台安全防护策略
技术措施:加密、认证、权限控制、漏洞扫描;管理流程:安全审计、渗透测试、员工培训。实时分析平台的安全不是“一次性项目”,而是“持续迭代的过程”——随着业务的发展和威胁的变化,安全策略需要不断调整。希望本文能给你提供一个“从0到1”的安全体系框架,帮助你构建更安全的实时分析平台。如果你有任何问题或补充,欢迎在评论区留言讨论!作者:XXX(资深大数据工程师,专注实时计算与安全)公众号:XXX(定期分享大数据技术与安全实践)GitHub:XXX(开源实时安全工具库)
2025-09-16 22:18:51
410
原创 提示工程架构师:文创产业AIGC应用的内容审核指南
文创产业的AIGC应用,本质是“用技术传递情感”。而提示工程的价值,就是让技术在传递情感的同时,不越合规的边界。懂技术:理解大模型的原理,掌握提示工程的技巧;懂文创:理解文创内容的“情感属性”和“规则边界”;懂用户:理解用户的需求,平衡“生成效率”和“合规风险”。合规不是“束缚”,而是“保护”——只有合规的AIGC内容,才能真正传递有价值的情感,才能让文创产业走得更远。参考资料《AIGC内容审核白皮书》(中国互联网协会,2023)《提示工程:从入门到精通》(机械工业出版社,2024)
2025-09-16 20:56:55
640
原创 提示工程架构师的核心竞争力是什么?90%的人都理解错了
一个能解决复杂问题的提示工程系统,通常包含以下四层(用Mermaid流程图表示):fill:#333;color:#333;color:#333;fill:none;用户交互层意图解析层知识增强层执行层反馈层向量数据库工具调用层级核心职责设计要点用户交互层接收用户输入(文本/语音/图像),返回模型输出多模态支持、输入归一化(比如将语音转文本)、输出格式化(比如将JSON转为自然语言)意图解析层识别用户真实意图,过滤无效输入。
2025-09-16 19:19:42
717
原创 智能家居生态系统中AI应用的创新,AI应用架构师激发活力
智能家居的本质是**“以用户为中心的生态协同系统”,而AI是打通设备、数据与服务的核心引擎。本文从第一性原理出发,拆解智能家居生态的技术底层逻辑,分析AI如何通过多模态感知、边缘-云协同、自适应决策解决传统系统的“碎片化”“刚性化”痛点;并以AI应用架构师的视角,探讨其如何通过系统设计、生态整合、技术迭代**激发生态活力——从“单设备智能”到“全场景协同”,从“被动响应”到“主动预判”,最终实现“懂用户的家”。
2025-09-16 17:47:38
184
原创 AI应用架构师从0到1:用Python实现投资组合AI优化(全程实战)
用马科维茨的“有效前沿”选了一个低波动、高收益的组合,但实际运行时却因为市场突变(比如2020年新冠疫情)导致大幅回撤?传统投资组合优化是静态的——一旦确定权重就长期持有,但市场是动态变化的(比如科技股牛市转向价值股牛市),静态组合无法适应?传统模型假设收益率服从正态分布,但实际市场中“黑天鹅”事件(比如2008年金融危机)频发,肥尾效应显著,导致优化结果偏差?这些都是传统量化投资的痛点。而AI(强化学习)+ 现代Portfolio理论(MPT)
2025-09-16 16:15:40
678
原创 大数据领域Hive的高级查询优化策略
Hive是基于Hadoop的数据仓库工具,它把SQL(HQL)翻译成MapReduce/Tez/Spark任务,帮我们处理海量数据。但Hive的“慢”常常被人吐槽——比如查一张10TB的表,可能要等半小时。本文的目的,就是教你用高级优化策略,把“慢查询”变成“快查询”。范围:覆盖Hive中最常用、最有效的优化手段(分区、分桶、谓词下推、Join优化、矢量化),不涉及底层源码分析(像“不教你怎么造锅,只教你怎么用锅更快炒菜”)。备菜:先讲Hive查询的基本流程(知道“菜是怎么炒出来的”);切菜。
2025-09-16 14:53:43
323
原创 从单体到分布式:提示工程架构师讲解Agentic AI提示系统的扩展性演进之路
我们的目标是讲清楚Agentic AI提示系统从单体到分布式的演进逻辑单体系统的痛点(为什么不够用?分布式系统的核心优势(解决了什么问题?从0到1设计分布式提示系统的关键步骤(怎么落地?范围覆盖提示工程架构设计(不是具体算法调优),适合想提升AI系统扩展性的工程师、产品经理,甚至对AI系统感兴趣的"技术好奇者"。故事引入:用"小王的奶茶店"类比AI系统的成长;核心概念:把Agent、单体/分布式系统变成"奶茶店员工";演进逻辑:从"一人包圆"到"分工协作"的必然选择;技术实现。
2025-09-16 13:21:39
446
原创 用户信任度从0到1:提示工程架构设计的核心方法论
要构建信任,必须先明确“用户到底信任什么”。根据斯坦福大学AI伦理中心的研究,用户对AI的信任可拆解为五个可量化的维度可靠性(Reliability):AI是否能稳定输出符合要求的结果(比如“问天气”每次都返回准确温度);一致性(Consistency):AI是否能遵循用户的核心意图(比如“写正式邮件”不会突然变成口语化表达);透明度(Transparency):用户是否能理解AI输出的“决策逻辑”(比如“推荐这首歌”是因为用户喜欢“民谣”标签);可控性(Controllability)
2025-09-16 11:49:36
388
原创 构建大数据领域数据产品的生态系统
构建大数据领域数据产品的生态系统面临诸多挑战。从技术层面看,数据的多样性和高速性要求生态系统具备强大的数据处理和集成能力,能够无缝处理结构化、半结构化和非结构化数据。不同数据产品之间的数据一致性和互操作性也是关键问题,需要建立统一的数据标准和接口规范。在业务层面,如何准确理解市场需求,将数据产品与实际业务场景紧密结合,实现数据驱动的决策,是构建生态系统的核心挑战之一。此外,数据产品的商业模式设计也至关重要,如何通过数据产品的销售、订阅或增值服务实现盈利,同时保证数据的合规使用,是企业需要解决的问题。
2025-09-16 10:17:32
826
原创 干货满满!提示工程架构师关于Agentic AI上下文工程隐私保护
想让智能体更“聪明”,就需要收集更多上下文(对话历史、用户偏好、环境数据);但上下文里藏着用户的隐私——身份证号、健康记录、财务信息,一旦泄露或滥用,后果不堪设想。静态加密无法处理智能体对上下文的实时动态调用(比如需要从对话历史中提取用户偏好);一刀切脱敏会破坏上下文的语义连贯性(比如把“我明天要去北京出差”脱敏成“我[时间]要去[地点]出差”,智能体根本无法理解)。这篇文章将为你提供一套全链路的Agentic AI上下文隐私保护框架。
2025-09-16 03:53:53
684
原创 一文搞懂大数据流处理,让你超越90%同行
流数据(Stream Data)是持续产生、无固定边界、顺序不确定的数据集。无限性:永远不会结束(比如用户的点击流、传感器的温度数据);无序性:数据到达的顺序可能与产生的顺序不一致(比如跨地域的用户请求);易变性:数据可能延迟、重复或丢失(比如网络波动导致的数据包重传)。相比之下,批数据(Batch Data)是有限、有序、稳定的——比如昨天的销售订单表,一旦生成就不会改变。tet_ete,事件产生的时间(比如日志中的timestamp字段);tpt_ptp。
2025-09-16 02:21:50
519
原创 AI应用架构师必学:用AI监控业务连续性的3个异常检测算法
业务连续性是企业的“生命线”——哪怕一次10分钟的宕机,都可能让电商平台损失数百万销售额、让金融机构违反监管要求、让 SaaS 服务商流失核心客户。传统监控系统依赖“阈值法”(比如“CPU使用率超过90%报警”),但面对高维业务数据、动态场景变化、隐性关联异常时,这种方法要么“漏报”(比如凌晨订单量突然暴增但没触发阈值),要么“误报”(比如促销日的正常流量被当成攻击)。作为AI应用架构师,你需要的是能理解业务逻辑的“智能监控大脑”——用AI异常检测算法从海量数据中精准识别风险。本文将拆解3个。
2025-09-16 00:44:37
446
原创 解析大数据领域数据治理的重要环节
数据治理战略是数据治理的“顶层设计”,回答**“为什么做数据治理”“治理什么范围的数据”“达到什么目标”**三大问题。通过这套体系,企业能将“数据沼泽”转化为“数据金矿”,真正释放数据的业务价值。数据安全与隐私保护是数据治理的“底线”,需同时满足**“防外部攻击”和“合规要求”**。数据标准是**“对数据的格式、含义、取值范围等制定的统一规范”**,确保不同部门对同一数据的理解一致。元数据是**“描述数据的数据”**,回答“这是什么数据?数据治理不是“数据团队自己的事”,需要**“全员参与”**。
2025-09-15 23:12:33
488
原创 大数据领域数据产品的数据分析工具推荐
工具适用团队优势缺点技术团队灵活、低延迟、生态全学习曲线高Amplitude非技术团队/运营开箱即用、可视化好价格高、数据隐私问题工具适用团队优势缺点Grafana技术团队/运维免费、定制性强、告警好可视化偏技术向Tableau非技术团队/产品可视化好、易上手价格高工具适用团队优势缺点技术团队实时多维分析快存储成本高Looker中大型企业建模好、AI辅助分析价格高、需维护语义层工具适用团队优势缺点技术团队/中小企业。
2025-09-15 21:40:43
716
原创 AI架构师:评估小模型vs大模型性能性价比,哪个更适合业务需求?
模型选型不是技术竞赛,而是商业决策。企业引入AI的终极目标是创造价值——可能是提升效率、降低成本、优化体验,或开拓新业务。大模型成本陷阱:某互联网公司实测显示,基于GPT-4的客服系统月均API调用成本高达72万元,是原有人工规则+小模型方案的23倍;小模型能力瓶颈:某银行尝试用开源小模型做信贷文档审查,关键信息抽取准确率仅81%,漏检风险导致合规部门否决上线;部署复杂性鸿沟:某制造企业计划在产线部署视觉检测模型,边缘设备算力仅支持100MB以下模型,而大模型推理需GPU集群支持。
2025-09-15 20:18:46
594
原创 从MySQL转Neo4j:大数据开发者7天入门指南,掌握图数据库核心技能(附对比手册)
目的:帮MySQL开发者用最短时间掌握Neo4j的核心技能——不是“取代MySQL”,而是“补全关联数据处理的短板”。范围:覆盖图数据库基础概念、与MySQL的建模差异、Cypher查询语言、实战项目(电影推荐系统),以及生产环境中的常见问题。不涉及:Neo4j的分布式集群部署、底层存储引擎优化(这些是进阶内容,7天内Focus核心)。天数主题目标Day1为什么要从MySQL转Neo4j?搞懂“图数据库解决了MySQL的什么痛点”Day2图数据库的核心概念:节点、关系、属性。
2025-09-15 18:56:50
602
原创 大数据平台选型:结构化数据处理能力评估
每天凌晨3点前算出前一天的“TOP10热销商品”(批处理);用户下单后1秒内推荐“常买的同类商品”(实时流处理);运营人员能快速查询“过去30天北京地区的用户复购率”(交互式查询)。这些需求的核心都是结构化数据处理——如何高效存储、计算、查询“规整如表格”的数据(比如订单表有“订单ID、用户ID、商品ID、金额、时间”等固定字段)。本文的目的,就是帮你建立一套评估框架,从“处理能力”“易用性”“扩展性”三个维度,选出能满足这些需求的大数据平台。
2025-09-15 17:19:36
750
原创 大数据领域数据降维:原理、方法与实战应用
假设你有一个玩具箱,里面装了100个玩具:积木、拼图、娃娃、汽车……每次想找一个特定的玩具,都要翻半天(这像不像电脑处理高维数据时的“慢速度”?而且玩具太多,你根本记不清每个玩具的位置(这像不像模型面对高维数据时的“过拟合”——记住了所有细节,却没抓住重点)。数据降维的核心目的在保留数据主要信息的前提下,减少特征的数量。效率问题:高维数据计算量大,降维后能让模型跑得更快;效果问题:高维数据容易导致“维度灾难”(比如特征太多,样本不够,模型无法学习),降维后能提高模型的准确性;可视化问题。
2025-09-15 14:15:21
616
原创 深度解读!大数据用户画像中的标签体系建设
想象你经营着一家网红奶茶店,刚开始时,你对顾客一无所知——不知道谁喜欢三分糖、谁必加珍珠、谁是每周五下午来的常客。于是你只能盲目推荐,导致顾客满意度不高。直到有一天,你开始用笔记本记录每位顾客的喜好:“小李-加珍珠-去冰-每周三购买”、“张姐-无糖-热饮-会员”……这些记录就是标签,而整理这些标签的规则和结构就是标签体系。半个月后,当小李走进店里,你笑着说:"今天还是老样子,珍珠奶茶去冰吗?"小李惊喜不已——这就是标签体系的魔力。
2025-09-15 12:43:20
528
原创 智能招聘AI平台的团队架构:组建高效架构团队的经验
接着,分享团队组建的实战经验,包括人才画像、招聘策略、团队文化建设等;智能招聘AI平台依赖于多种前沿AI技术的融合应用,如自然语言处理(NLP,用于简历解析、职位理解、语义搜索、聊天机器人)、机器学习(ML,用于人岗匹配、候选人推荐、招聘流程优化预测)、计算机视觉(CV,用于视频面试分析、简历照片处理)、知识图谱(KG,用于构建人才网络、企业画像)等。随着大语言模型(LLM)等AI技术的飞速发展,智能招聘AI平台将迎来更多颠覆性的机遇,如更自然的人机交互、更深度的个性化推荐、更智能的招聘流程自动化等。
2025-09-15 11:21:23
622
原创 在线学习系统架构设计:AI应用架构师的需求分析方法论
未来用户可直接与AI对话生成个性化需求(如“帮我设计一个3周的Python入门计划”),需求分析将从“文档撰写”变为“AI需求理解能力的设计”。本文提出的AI应用架构师需求分析方法论对齐价值:确保AI功能不偏离业务目标;精准落地:避免过度设计或能力缺失;控制风险:提前识别技术/合规风险;持续迭代:从原型到灰度的需求验证闭环。最终实现“AI赋能教育”的本质目标——让每个学习者获得个性化、高效、有温度的学习体验。
2025-09-15 09:49:19
927
原创 Hive面试必问30题:从原理到优化,搞定面试官就靠这篇
理解原理:不仅要会写HiveQL,还要理解背后的执行原理实战经验:准备几个你优化过的实际案例,用数据说话最新动态:了解Hive社区的最新发展,展示你的学习能力综合能力:理解Hive在整体数据架构中的位置和角色掌握这30个问题,你就能在Hive面试中游刃有余。但记住,面试不仅是考察知识点,更是考察解决问题的思路和能力。希望本文不仅能帮助你在面试中脱颖而出,更能提升你的实际Hive开发能力。祝你在接下来的面试中取得好成绩!如果你在学习和面试过程中遇到任何问题,欢迎在评论区留言讨论。
2025-09-15 03:25:43
584
原创 传统内容创作vs AI原生应用:效率提升300%的底层逻辑揭秘
我们常说"内容为王",但内容创作的效率瓶颈传统创作者平均花60%的时间在"找选题、查资料、改语法"等低价值环节;企业内容团队每年要投入30%的成本在"重复写同样的产品文案"上;自媒体人想周更3篇,得熬夜到凌晨才能勉强完成。本文的目的,是用"流程拆解+技术原理+实战案例"的方式,说清楚AI原生应用到底在哪些环节提升了效率,以及背后的底层逻辑。范围覆盖"选题-素材-写作-修改-输出"全创作流程,适合所有想提升创作效率的人——不管你是自媒体博主、企业文案,还是刚入门的内容新人。本文会按照"
2025-09-15 01:48:44
700
原创 数据湖中的AI技术集成:架构师的实战解决方案
数据湖是企业数字化转型的“数据资产仓库”,但传统数据湖的“原始数据堆”模式难以满足AI对结构化、高质量、可复用数据的需求。本文从架构师视角出发,结合实战经验,系统讲解数据湖与AI技术集成的全流程:从数据治理(让数据“可找到、可信任”)到特征工程(将数据转化为AI能理解的“语言”),再到模型部署(让AI真正产生业务价值)。通过“仓库-工厂”的生活化比喻、具体的架构设计(湖仓一体)、代码示例(Feast特征商店、TensorFlow模型训练)和案例分析(电商推荐系统),为架构师提供可落地的解决方案。
2025-09-15 00:26:47
1045
原创 炸裂!AI应用架构师打造AI驱动元宇宙教育的创举
你讨厌"一刀切"的数学课——明明已经会了加减乘除,老师还在讲竖式计算;你害怕"危险"的化学实验——想试试点燃酒精灯,但老师说"太危险,看视频就行";你好奇"遥远"的历史——想看看恐龙时代的样子,但课本上只有图片;你孤独"的自习课——想找同学讨论问题,但大家都在写作业。传统教育的痛点,本质上是"无法适配每个学生的独特性"和"无法还原真实场景的体验性。
2025-09-14 23:04:49
816
原创 数据合规与数据仓库:传统BI系统的合规升级
传统BI系统的“野蛮生长”时代结束了。过去,企业通过BI系统从分散的业务系统中提取数据、生成报表,快速支撑决策,但却忽略了“数据合规”这一隐形红线——客户身份证号未脱敏、数据来源无法追溯、用户权限管控缺失,这些问题都可能让企业陷入合规危机。本文将以“传统BI系统的合规升级”为核心,用“旧仓库改造”的类比,拆解数据合规的底层逻辑,说明数据仓库如何成为传统BI的“合规引擎”,并通过真实案例、代码示例和流程图,手把手教你完成从“违规风险”到“合规能力”的转型。
2025-09-14 21:27:38
872
原创 提示系统容器化部署的镜像仓库管理:提示工程架构师的方案
当提示工程从“单条prompt调参”进化到“复杂系统级设计”时,容器化部署已成为保障提示系统一致性、可扩展性的核心手段。但随之而来的问题是:如何管理海量的提示系统镜像?如何避免“镜像版本混乱”“安全漏洞埋雷”“拉取速度慢到崩溃”等痛点?本文将把镜像仓库比作“AI提示的快递柜”——每个镜像都是一个封装好的“提示服务包裹”,而架构师的任务是把这些包裹“摆整齐、防偷拿、快取用”。我们会用生活化的比喻拆解核心概念,用实战代码演示镜像构建与管理,用企业级案例。
2025-09-14 19:55:28
886
原创 技能 gaps!未来提示架构趋势下的能力缺失,提示工程架构师这样填补!
提示架构(Prompt Architecture)是系统化设计Prompt全生命周期的方法论Prompt的生成(多模态融合、动态调整);Prompt的管理(版本控制、模板复用);Prompt的优化(基于反馈的自治迭代);Prompt的集成(与业务系统的对接);Prompt的运维(可观测性、安全防御)。而“提示工程架构师”的角色,早已从“Prompt写作者”升级为“Prompt系统设计师”——他们要解决的是“如何让Prompt系统稳定、可扩展、安全、智能”的问题。
2025-09-14 18:18:15
589
原创 AI架构师必读:智能交通领域的开源工具大全
首先,定义一个简单的路口信号控制环境import gym""" 路口信号控制环境(简化版) """# 1. 动作空间:信号相位(0=南北通行,1=东西通行)# 2. 状态空间:每个车道的车辆数(num_lanes*2个车道,如南北方向2个车道,东西方向2个车道)# 3. 环境参数self.num_lanes = num_lanes # 每个方向的车道数self.max_vehicles = max_vehicles # 每个车道的最大车辆数。
2025-09-14 16:46:28
1021
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人