经济预测中,AI模型的鲁棒性怎么保证?AI应用架构师的3个方法

经济预测中,AI模型的鲁棒性怎么保证?AI应用架构师的3个方法

一、引入与连接:当AI预测遇到经济的“薛定谔盒子”

2022年春天,欧洲能源价格的暴涨让全球经济预测模型集体“翻车”。某知名投行的AI模型基于过去10年的油价数据,预测当年天然气价格将稳定在每兆瓦时30欧元左右,但实际价格却飙升至300欧元以上——模型没见过“俄乌冲突”这种黑天鹅,也没学会如何处理“政策制裁”这种非经济变量的冲击。

2023年,ChatGPT掀起的AI热潮让人们对“智能经济预测”充满期待,但从业者们心里清楚:经济系统不是图像或文本,它是一个由人、政策、市场、突发事件交织而成的“活系统”,AI模型的“鲁棒性”(Robustness)才是其能否落地的核心门槛

什么是经济预测中的AI鲁棒性?简单说,就是模型在面对数据噪声、分布漂移、未观测因素(如政策突变、黑天鹅事件)时,保持预测性能稳定的能力。就像一辆在暴雨天行驶的汽车,鲁棒的模型是“四驱+稳定系统”,即使路面湿滑、障碍物突然出现,也能保持方向;而不鲁棒的模型则是“两驱+无ESP”,稍微有点扰动就会失控。

对于AI应用架构师来说,保证经济预测模型的鲁棒性,本质上是在“不确定性”中构建“确定性框架”。本文将结合经济预测的场景特点,分享3个架构设计层面的核心方法,帮你从“数据-模型-应用”三个维度打造“抗造”的AI预测系统。

二、概念地图:经济预测的“鲁棒性困境”到底难在哪?

在讨论解决方案前,我们需要先理清经济预测的核心矛盾鲁棒性的维度,建立整体认知框架。

1. 经济预测的3大“天然难点”

经济系统的复杂性决定了AI模型的鲁棒性挑战远超过图像识别、推荐系统等领域:

  • 数据的“非平稳性”:经济数据不是静态的,比如GDP增长、失业率会随政策、技术革命而发生“结构突变”(Structural Break),过去的规律可能突然失效(比如疫情后消费习惯的永久改变)。
  • 变量的“因果模糊性”:经济变量间的关系不是简单的“输入-输出”,而是“互为因果”(比如利率上升会抑制投资,但投资下降又会导致利率下调),模型容易学习到“虚假相关”(比如夏天冰淇淋销量和泳衣销量正相关,但真正的原因是“温度”)。
  • 环境的“不可观测性”:黑天鹅事件(如战争、疫情)、政策变量(如美联储加息)、心理因素(如消费者信心)无法完全量化,模型无法“看见”这些因素,却会被它们剧烈影响。

2. 鲁棒性的4个核心维度

在经济预测场景中,鲁棒性不是“单一指标”,而是涵盖4个层面的能力:

  • 抗扰动性:输入数据的微小变化(如统计误差、数据缺失)不会导致输出的剧烈波动(比如GDP数据多算0.1%,模型不会把增长预测从3%调到5%)。
  • 泛化性:模型能适应“分布漂移”(Distribution Shift),比如从“疫情前”的数据训练,能准确预测“疫情后”的经济走势。
  • 适应性:当环境发生重大变化(如政策调整、技术革命)时,模型能快速调整,而不是“刻舟求剑”。
  • 可解释性:模型的预测逻辑能被人类理解(比如经济学家能看懂“为什么模型预测失业率会上升”),这样才能发现模型的“盲点”,避免“黑箱”导致的鲁棒性隐患。

三、基础理解:用“导航系统”比喻鲁棒性设计

为了更直观理解鲁棒性,我们可以把经济预测模型比作汽车导航系统

  • 数据层:导航的“传感器”(GPS、路况摄像头、实时 traffic 数据),如果传感器数据有噪声(比如GPS信号弱),或者数据过时(比如没更新修路信息),导航就会指错路。
  • 模型层:导航的“算法”(路径规划、实时调整逻辑),如果算法只记住了“平时的路况”,没考虑“暴雨天的拥堵”,就会给出“耗时最短但实际最堵”的路线。
  • 应用层:导航的“交互界面”(给司机的提示、实时更新),如果司机发现导航错了,不能反馈给系统,导航就永远不会改进。

鲁棒的导航系统需要:可靠的传感器(数据层)、灵活的算法(模型层)、闭环的反馈(应用层)——这也是经济预测AI鲁棒性设计的核心逻辑。

四、层层深入:AI应用架构师的3个鲁棒性设计方法

接下来,我们从“数据-模型-应用”三个层面,分享架构师的具体设计方法,每个方法都结合经济预测的场景特点,附实战案例。

方法1:数据层——构建“抗噪-适配”双循环数据管道

核心问题:经济数据充满噪声(统计误差、滞后性),且会随时间发生“分布漂移”(比如疫情后消费数据的分布完全改变),如何让数据“干净”且“适应变化”?

设计逻辑:数据层是鲁棒性的基础,需要建立“先过滤噪声,再适应变化”的双循环管道,像“净水器+自适应滤芯”一样,保证输入模型的数据质量。

步骤1:多源数据融合,用“交叉验证”过滤噪声

经济数据的“单一来源”往往不可靠(比如官方统计数据可能滞后,民间数据可能有偏差),多源数据融合能通过“交叉验证”过滤噪声。

实战案例:某消费金融公司预测“月度消费增长”时,采用了“三方数据融合”方案:

  • 结构化数据:统计局的社会消费品零售总额(官方,滞后1个月);
  • 半结构化数据:阿里天猫的月度交易数据(民间,实时);
  • 非结构化数据:微博、小红书的“消费舆情”数据(用大语言模型提取“消费信心”指数)。

通过贝叶斯融合模型(Bayesian Fusion),将三方数据的“概率分布”结合起来:比如天猫数据显示消费增长5%,但舆情数据显示“消费者信心下降”,模型会调整预测值至4%,比单一使用统计局数据(滞后且可能有误差)更准确。

关键技巧

  • 给不同数据源分配“可信度权重”(比如官方数据权重0.6,民间数据0.3,舆情数据0.1),权重可通过历史误差动态调整;
  • 用“因果推断”(比如Do-Calculus)排除“虚假相关”,比如“冰淇淋销量”和“泳衣销量”的相关是因为“温度”,融合时要控制“温度”这个 confounding variable(混杂变量)。
步骤2:动态数据适配,用“域适应”处理分布漂移

经济数据的“分布漂移”是鲁棒性的大敌(比如疫情前“线下消费”占比70%,疫情后“线上消费”占比80%),**域适应(Domain Adaptation)**能让模型从“源域”(旧数据)迁移到“目标域”(新数据),保持性能稳定。

实战案例:某券商预测“股票市场波动率”时,遇到了“2022年美联储加息”导致的分布漂移(加息前波动率均值为15%,加息后均值为25%)。他们采用了**对抗性域适应(Adversarial Domain Adaptation)**方案:

  • 用“源域”(2018-2021年数据)训练“预测模型”(LSTM),预测波动率;
  • 同时训练一个“域判别器”(Discriminator),试图区分“源域”和“目标域”(2022年数据);
  • 预测模型通过“对抗训练”,让域判别器无法区分其输出的“源域特征”和“目标域特征”,从而学会“泛化”到目标域。

结果显示,采用域适应后,模型在2022年的预测误差比未采用的模型低30%。

关键技巧

  • 选择“不变特征”(Invariant Features)作为域适应的基础,比如“企业盈利增速”是影响波动率的不变特征,而“市场情绪”是易变特征;
  • 用“时间对齐”(Time Alignment)处理“滞后漂移”,比如将“加息前”和“加息后”的时间序列数据对齐到“政策事件”节点,减少时间差异的影响。
步骤3:数据增强,用“极端场景模拟”提升抗冲击能力

黑天鹅事件(如疫情、战争)的“小概率、大影响”是模型的“盲区”,数据增强能通过模拟极端场景,让模型“见过”更多情况,提高抗冲击能力。

实战案例:某保险公司预测“灾害性天气对经济的影响”时,用**生成对抗网络(GAN)**模拟了“极端暴雨”“台风”等场景的数据:

  • 用历史灾害数据训练GAN的“生成器”(Generator),生成“极端降雨天数+GDP增长”的合成数据;
  • 将合成数据与真实数据混合,训练预测模型(XGBoost);
  • 当2023年“杜苏芮”台风袭击时,模型能准确预测“受灾地区GDP增速下降1.5%”,比未用数据增强的模型准确2倍。

关键技巧

  • 用“因果约束”(Causal Constraints)保证合成数据的合理性,比如“极端暴雨”会导致“农业产出下降”,进而导致“GDP增长下降”,合成数据要符合这个因果链;
  • 控制合成数据的“极端程度”,避免“过拟合”到不切实际的场景(比如模拟“百年一遇”的暴雨,但不要模拟“千年一遇”的,因为没有历史数据支撑)。

方法2:模型层——设计“模块化-可解释”的鲁棒架构

核心问题:经济系统是“复杂系统”,单一模型(如LSTM、Transformer)无法处理“互为因果”的变量关系,且“黑箱”模型无法让人类发现其“盲点”,如何让模型“可拆解、可解释、可调整”?

设计逻辑:将经济系统“模块化”(分解为多个子系统),每个子系统用“适合的模型”处理,再用“可解释框架”整合,像“积木搭房子”一样,某个积木坏了可以替换,整体结构保持稳定。

步骤1:系统分解,用“模块树”处理复杂关系

经济系统可以分解为“需求侧”“供给侧”“政策侧”“外部冲击”等子系统,每个子系统的变量关系不同,需要用不同的模型处理。

实战案例:某宏观经济研究机构预测“GDP增长”时,采用了“模块树”架构:

  • 需求侧模块:处理“消费”“投资”“出口”三个变量,用LSTM处理时间序列关系(比如消费增长的滞后效应);
  • 供给侧模块:处理“劳动力”“资本”“技术”三个变量,用随机森林处理结构关系(比如资本投入对GDP的边际效应);
  • 政策侧模块:处理“利率”“税收”“财政支出”三个变量,用因果图模型(Causal Graph)处理因果关系(比如利率上升对投资的抑制作用);
  • 外部冲击模块:处理“油价”“汇率”“黑天鹅事件”,用贝叶斯网络处理不确定性(比如油价上涨的概率对GDP的影响)。

最后用加权平均(权重由历史误差确定)整合各模块的输出,得到GDP增长预测。当“政策侧”发生变化(比如美联储加息)时,只需调整“政策侧模块”的因果图,不需要重新训练整个模型。

关键技巧

  • 模块的“颗粒度”要适中,太粗(比如只分“需求”“供给”)无法处理细节,太细(比如每个变量一个模块)会增加复杂度;
  • 模块间的“接口”要明确,比如“需求侧模块”的输出是“消费增长预测”,作为“政策侧模块”的输入,避免变量交叉污染。
步骤2:可解释性嵌入,用“因果+特征归因”发现盲点

“黑箱”模型的鲁棒性隐患在于“不知道模型为什么错”,可解释性能让人类发现模型的“虚假相关”或“遗漏变量”,从而调整模型。

实战案例:某银行用Transformer模型预测“企业违约率”时,发现模型对“企业员工数量”这个变量的权重很高,但经济学家认为“员工数量”不是违约的核心因素(比如互联网公司员工少但违约率低)。通过SHAP值(SHapley Additive exPlanations)分析,发现模型学习到“员工数量多的企业,财务报表更复杂,审计时间更长”,而“审计时间长”与“违约率”正相关——这是一个“虚假相关”(员工数量→审计时间→违约率)。

于是,架构师调整了模型:

  • 在数据层加入“审计时间”变量,控制这个 confounding variable;
  • 在模型层用因果Transformer(Causal Transformer),将“员工数量”与“违约率”的因果路径(员工数量→企业规模→违约率)明确嵌入模型。

调整后,模型对“员工数量”的权重从0.3降到0.1,预测误差下降25%。

关键技巧

  • 结合“因果解释”和“特征归因”:特征归因(如SHAP、LIME)告诉“模型用了哪些变量”,因果解释(如因果图、Do-Calculus)告诉“变量间的因果关系”;
  • 让经济学家参与可解释性分析,因为他们了解经济系统的“先验知识”(比如“利率上升会抑制投资”是常识),能快速发现模型的“不合理”。
步骤3:鲁棒优化,用“对抗训练”提升抗扰动能力

即使数据和模型设计得很好,输入的微小扰动(如统计误差、数据缺失)也可能导致输出的剧烈波动,鲁棒优化(Robust Optimization)能让模型在“最坏情况”下也保持性能稳定。

实战案例:某量化对冲基金用支持向量机(SVM)预测“股票收益率”时,发现模型对“每股收益(EPS)”的微小变化非常敏感(EPS多算0.01元,收益率预测从5%调到10%)。他们采用了对抗训练(Adversarial Training)方案:

  • 给输入数据(EPS、市盈率、市净率)添加“扰动”(比如EPS±1%,市盈率±2%);
  • 训练模型时,同时最小化“原始数据的预测误差”和“扰动数据的预测误差”;
  • 最终模型对EPS的敏感度从0.8降到0.3,预测的波动幅度减少了40%。

关键技巧

  • 扰动的“强度”要符合实际情况(比如统计数据的误差通常在±1%以内,不要加±10%的扰动);
  • 用“区间预测”(Interval Prediction)代替“点预测”,比如预测“股票收益率在3%-7%之间”,而不是“5%”,这样能更真实反映模型的不确定性。

方法3:应用层——建立“反馈-进化”的闭环系统

核心问题:经济预测是“动态过程”,模型不可能“一劳永逸”,如何让模型在“应用中学习”,不断适应环境变化?

设计逻辑:应用层是鲁棒性的“保障”,需要建立“实时监控-人类反馈-增量学习”的闭环,像“免疫系统”一样,发现问题→反馈问题→解决问题。

步骤1:实时监控,用“异常检测”发现模型漂移

实战案例:某电商平台用XGBoost预测“月度销售额”时,建立了“双指标监控系统”:

  • 误差监控:跟踪预测值与实际值的差异,用CUSUM检验(累积和检验)检测“误差是否显著增加”(比如连续3个月误差超过阈值,触发警报);
  • 特征监控:跟踪输入特征的分布变化(比如“线上消费占比”从60%升到80%),用KL散度(Kullback-Leibler Divergence)检测“分布漂移”(KL散度超过0.5,触发警报)。

2023年“618”大促前,监控系统发现“线上消费占比”的KL散度达到0.6(超过阈值0.5),于是提前触发模型更新,避免了“用旧数据预测新场景”的误差。

关键技巧

  • 监控指标要“可解释”,比如“误差增加”要关联到“哪个模块出了问题”(比如需求侧模块的误差增加,还是政策侧模块);
  • 用“ dashboard ”可视化监控结果,让架构师和经济学家能快速发现问题(比如用红色预警显示“分布漂移”,绿色显示“正常”)。
步骤2:人类-in-the-Loop,用“专家知识”修正模型

核心问题:AI模型无法理解“政策意图”“人类心理”等非量化因素,**人类-in-the-Loop(HITL)**能让经济学家的“先验知识”补充模型的“盲区”。

实战案例:某央行用ML+计量模型预测“通胀率”时,建立了“模型预测-专家修正”流程:

  • 模型输出“通胀率预测值”(比如3.5%);
  • 经济学家结合“政策信息”(比如即将出台的“稳物价”政策)、“舆情信息”(比如消费者对通胀的预期),修正预测值(比如调到3.0%);
  • 将修正后的预测值反馈给模型,用强化学习(Reinforcement Learning)调整模型的权重(比如增加“政策变量”的权重)。

结果显示,加入人类反馈后,模型的预测误差比纯AI模型低40%,而且经济学家对模型的“信任度”显著提高。

关键技巧

  • 明确“人类与模型的分工”:模型处理“量化关系”(比如GDP与通胀的关系),人类处理“非量化关系”(比如政策意图);
  • 用“奖励机制”鼓励人类反馈,比如将“修正后的预测误差”与经济学家的绩效挂钩,提高反馈的积极性。
步骤3:增量学习,用“新数据”持续更新模型

核心问题:重新训练模型(Full Training)需要大量时间和资源,增量学习(Incremental Learning)能让模型用“新数据”逐步更新,保持适应能力。

实战案例:某零售企业用LSTM预测“门店客流量”时,采用了在线增量学习(Online Incremental Learning)方案:

  • 每天收集“新的客流量数据”(比如当天的销售数据、天气数据、促销活动数据);
  • 用“小批量梯度下降”(Mini-batch SGD)更新模型的权重,而不是重新训练整个模型;
  • 每周用“验证集”(Validation Set)评估模型性能,如果性能下降,就“回滚”到上一周的模型(避免“灾难性遗忘”)。

结果显示,增量学习让模型的“更新时间”从“每天2小时”缩短到“每天10分钟”,而且模型能快速适应“周末促销”“节日效应”等短期变化。

关键技巧

  • 用“记忆模块”(Memory Module)防止“灾难性遗忘”(比如保存旧数据的关键特征,在增量学习时同时训练旧特征和新特征);
  • 控制“增量学习的频率”,比如每天更新一次,不要每小时更新(避免“过度拟合”到短期噪声)。

五、多维透视:鲁棒性设计的“辩证思考”

1. 历史视角:从“计量模型”到“AI+计量”的鲁棒性进化

早期经济预测用计量模型(如ARIMA、VAR),这些模型基于“线性假设”和“平稳性假设”,鲁棒性差(比如无法处理非线性关系和结构突变)。后来机器学习模型(如LSTM、XGBoost)崛起,能处理非线性关系,但容易过拟合(比如学习到虚假相关)。现在AI+计量的混合模型(比如用ML处理非线性,用计量模型处理因果)成为主流,兼顾了鲁棒性和准确性。

2. 实践视角:美联储的“鲁棒预测系统”

美联储的“经济预测系统”(FRB/US Model)是“AI+计量”的典型案例:

  • 用**动态随机一般均衡模型(DSGE)**处理经济系统的“因果关系”(比如利率对投资的影响);
  • 机器学习模型(如随机森林)处理“非线性关系”(比如油价对通胀的非线性影响);
  • 加入人类反馈(美联储经济学家的修正),处理“政策意图”等非量化因素。

这个系统的鲁棒性得到了验证:在2020年疫情期间,美联储用它快速调整了“量化宽松”政策,避免了经济崩溃。

3. 批判视角:鲁棒性不是“绝对真理”

鲁棒性是“相对的”,不是“绝对的”:

  • 黑天鹅事件(如新冠疫情)是“不可预测的”,模型无法“提前学习”到这种极端场景,只能通过“数据增强”和“人类反馈”减少损失;
  • 模型的“鲁棒性”与“准确性”是“权衡关系”(Trade-off):过于鲁棒的模型(比如对所有扰动都不敏感)可能会“忽略”重要的变化(比如政策调整的影响),导致准确性下降。

4. 未来视角:大语言模型(LLM)对鲁棒性的提升

大语言模型(如GPT-4、Claude 3)能处理“非结构化数据”(比如新闻、政策文本、社交媒体舆情),这对经济预测的鲁棒性有很大提升:

  • LLM能“理解”政策文本的“意图”(比如“稳增长”政策的具体内容),补充模型的“政策侧”信息;
  • LLM能“生成”极端场景的“文本描述”(比如“如果发生战争,油价会涨到150美元/桶”),用这些描述生成合成数据,增强模型的抗冲击能力;
  • LLM能“解释”模型的预测逻辑(比如“模型预测通胀率上升,因为油价上涨和劳动力成本增加”),提高模型的可解释性。

六、实践转化:给AI应用架构师的“鲁棒性设计 checklist”

1. 数据层

  • 做“数据审计”:检查数据的“非平稳性”(用ADF检验)、“噪声水平”(用标准差)、“分布漂移”(用KL散度);
  • 设计“多源数据融合管道”:整合官方、民间、非结构化数据,用贝叶斯融合或因果推断过滤噪声;
  • 加入“域适应模块”:处理分布漂移,比如用对抗性域适应或迁移学习;
  • 做“数据增强”:用GAN或因果模拟生成极端场景数据,提升抗冲击能力。

2. 模型层

  • 分解经济系统为“模块树”:比如需求侧、供给侧、政策侧,每个模块用适合的模型(LSTM处理时间序列,随机森林处理结构数据,因果图处理因果关系);
  • 嵌入“可解释组件”:用SHAP、LIME做特征归因,用因果图做因果解释,让经济学家能理解模型逻辑;
  • 做“鲁棒优化”:用对抗训练或区间预测,提升模型对输入扰动的抗干扰能力;
  • 选择“混合模型”:比如AI+计量,兼顾非线性和因果关系。

3. 应用层

  • 建立“实时监控系统”:用CUSUM检验监控误差,用KL散度监控分布漂移,用dashboard可视化结果;
  • 设计“人类-in-the-Loop流程”:让经济学家修正模型预测,用强化学习调整模型权重;
  • 采用“增量学习”:用在线学习或联邦学习,持续更新模型,避免灾难性遗忘;
  • 制定“应急方案”:当模型发生重大漂移时,能快速回滚到旧版本,或切换到备用模型。

七、整合提升:鲁棒性设计的“底层逻辑”

经济预测中AI模型的鲁棒性设计,本质上是在“不确定性”中构建“确定性框架”

  • 数据层是“基础”,通过“抗噪-适配”保证输入的质量;
  • 模型层是“核心”,通过“模块化-可解释”处理复杂关系;
  • 应用层是“保障”,通过“反馈-进化”保持适应能力。

这三个层面不是“独立的”,而是“联动的”:数据层的“分布漂移”会触发模型层的“模块调整”,模型层的“误差增加”会触发应用层的“反馈-增量学习”。

最后,送给AI应用架构师一句话:鲁棒性不是“设计出来的”,而是“迭代出来的”。只有通过“数据-模型-应用”的持续循环,才能让模型在经济系统的“薛定谔盒子”中,保持稳定的预测性能。

思考问题与拓展任务

思考问题

  1. 如何平衡模型的“鲁棒性”与“准确性”?比如,过于鲁棒的模型可能会忽略重要的变化,导致准确性下降。
  2. 如何处理“未观测到的黑天鹅事件”?比如,2020年的疫情,模型无法提前学习到这种场景,如何减少损失?
  3. 大语言模型(LLM)对经济预测鲁棒性的提升,有哪些潜在的风险?比如,LLM可能会生成“虚假信息”,导致模型预测错误。

拓展任务

  1. 选择一个经济预测场景(比如股票市场波动率预测、消费增长预测),设计一个“抗噪-适配”数据管道,并用Python实现(比如用Pandas处理多源数据,用TensorFlow实现域适应)。
  2. 针对某个经济模型(比如LSTM预测GDP增长),用SHAP值分析其特征权重,找出“虚假相关”变量,并调整模型。
  3. 调研美联储的“FRB/US Model”,分析其“AI+计量”的混合架构,总结其鲁棒性设计的经验。

进阶资源推荐

书籍

  • 《经济预测中的机器学习》(Machine Learning for Economic Forecasting):作者是哥伦比亚大学的经济学家,结合经济理论和机器学习,讲解鲁棒性设计。
  • 《鲁棒优化》(Robust Optimization):作者是斯坦福大学的教授,系统讲解鲁棒优化的理论和方法,适合架构师参考。

论文

  • 《Robust Machine Learning for Economic Forecasting》(2023):发表在《Journal of Economic Perspectives》上,总结了AI模型在经济预测中的鲁棒性挑战和解决方案。
  • 《Adversarial Domain Adaptation for Time Series Forecasting》(2022):发表在《NeurIPS》上,针对时间序列的分布漂移问题,提出了对抗性域适应的方法。

课程

  • Coursera《AI in Economics》:由普林斯顿大学开设,讲解AI在经济预测、政策分析中的应用,包括鲁棒性设计。
  • Udacity《Machine Learning for Time Series Forecasting》:针对时间序列预测,讲解数据处理、模型设计、鲁棒性优化的方法。

结语:经济预测是AI技术的“试金石”,因为它面对的是“最复杂的系统”——人类社会。鲁棒性设计不是“技术问题”,而是“对经济系统的理解问题”。只有当架构师既能掌握AI技术,又能理解经济规律时,才能打造出“抗造”的AI预测系统。让我们一起,在“不确定性”中寻找“确定性”,用AI助力经济决策更明智。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值